
 1

QUARTERLY OF APPLIED MATHEMATICS 

VOLUME LIX, NUMBER 1 

MARCH 2001, PAGES 143-145 

 

 

 

A NOTE ON EXACT PARTICULAR  

SOLUTIONS OF GENERALIZED SHALLOW-WATER EQUATIONS 

By 

Anatoly B. Odulo (ASA, Narragansett, RI) 

 

Abstract. This note presents a set of systems of two first-order quasi-linear partial 

differential equations, which can be reduced to the shallow-water equations. This set 

includes equations describing a two-layered fluid flow. 

Introduction. The shallow-water equations 

ut+uux+hx=0, ht+uhx+hux=0      (SW) 

have been intensively studied analytically and numerically (see e.g. [2], [4, § 13.10]). 

Several exact analytical solutions of (SW) are known 

 u=x/t, h=a/t; u=(b+2x/t)/3, h=(x/t-b)2/9+a/t2/3; [2, § 5]   (PSa,b) 

 u=f′(t)x/f(t), h=0.25a(1-x2/f2(t))/f(t), f′(t)=(1-a/f(t))1/2;   (PSc) 

 x=2ht2s+0.5ln(1+2s/(1-s)), u=2hts, s2=1-h/(b-h2t2); [3, § 3].  (PSd) 

Here a and b are an arbitrary constants, ′ denotes the derivative. 

Consider the generalized shallow-water equations 

 vt+F(v,ζ)vx+0.5G1(v,ζ)ζx=0, ζ t+F(v,ζ)ζx+0.5G2(v,ζ)vx=0.   (GSW) 
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Theorem. Let u=u(x,t) and h=h(x.t) be a solution of (SW).  

a) If 

F(v,ζ)=f1(v+ζ)+f2(v-ζ) and G1(v,ζ)=G2(v,ζ)=f1(v+ζ)-f2(v-ζ),  (1) 

then relations 

f1(v+ζ)+f2(v-ζ)=u(x,t) and f1(v+ζ)-f2(v-ζ)=2h1/2(x,t)    (2) 

give a solution of (GSW).  

b) If 

F(v,ζ)=f1(v)f2(ζ)+q, G1(v,ζ)=(c1+f1
2)f2′/f1′ and G2(v,ζ)=(c2+f2

2)f1′/f2′, (3) 

then relations 

 f1(v)f2(ζ)+q=u(x,t) and (c1+f1
2)(c2+f2

2)=4h(x,t)    (4) 

give a solution of (GSW). Here f1 and f2 are arbitrary functions, q is a constant. 

Proof. Inserting u=F(v,ζ) and h=G(v,ζ) into (SW), we get 

 vt+(F+A(v,ζ))vx+B1(v,ζ)ζx=0, ζ t+(F-A(v,ζ))ζx+B2(v,ζ)vx=0.  (5) 

Here A=(GvGζ-FvFζ)/D, B1=(Gζ
2-GFζ

2)/D, B2=(GFv
2-Gv

2)/D and D(v,ζ)=FvGζ-GvFζ.  

a) Considering F(v,ζ)=f1(v+ζ)+f2(v-ζ) and G=[f1(v+ζ)-f2(v-ζ)]2/4 we obtain A=0, 

B1=B2=G1(v,ζ)/2. Thus (5) becomes (GSW) with F, G1 and G2 as given by (1). 

b) Considering F(v,ζ)=f1(v)f2(ζ)+q and G=(c1+f1
2)(c2+f2

2)/4 we obtain A=0, 

B1=0.5(c1+f1
2)f2′/f1′, B2=0.5(c2+f2

2)f1′/f2′. Thus (5) becomes (GSW) with F, G1 and G2 as 

given by (3). 

Example 1. Taking f1(z)=f2(z)=zn in (1) we get (GSW) with F=(v+ζ)n+(v-ζ)n, 

G=G=(v+ζ)n-(v-ζ)n. This equation has exact analytical solutions 2v(x,t)=(u/2+h1/2)1/n+ 

(u/2-h1/2)1/n, 2ζ(x,t)=(u/2+h1/2)1/n-(u/2-h1/2)1/n with u(x,t) and h(x,t) from (PSa-d). 
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Example 2. Unsteady two-layer fluid flow. Taking f1(x)=f2(x)=x and c1=c2=-1 in (3) we 

get (GSW) in the form 

 vt+(vζ+q)vx-0.5(1-v2)ζx=0, ζ t+(vζ+q)ζx-0.5(1-ζ2)vx=0.   (SW2) 

This system describes a flow of two homogenous inviscid fluids between two horizontal 

rigid plates in the hydrostatic and Boussinesq approximations (see (3.3.12) in [1]). The 

velocity u1, u2 and the thickness h1, h2 of the upper lighter (density ρ1) and lower denser 

(density ρ2) layer (see Fig.1) are expressed in terms of v and ζ as follows: 

 u1/c0=q+v(1+ζ)/2, u2/c0=q-v(1-ζ)/2, h1/H=(1-ζ)/2, h2/H=(1+ζ)/2. 

 

Fig.1 Evolution of the interface described by (SW2) with q=0 for initial conditions 

v(x,0)=0, ζ(x,0)=tanh x. 

 

Here H is the distance between the plates, c0
2=g’H, g’=g(ρ2-ρ1)/ρ2, g is the acceleration 

of gravity, q=Q/c0H, Q is the total volume flux, -1<ζ<1. 

t=0 t=2 t=3

t=4
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If u(x,t), h(x,t) is a solution of (SW) then v=w++w-, ζ= w+-w- is a solution of (SW2). 

Here w±=[(1±u(x-qt,t))2/4-h(x-qt,t)]1/2. Using (PSa-d) we get exact analytical solutions of 

(SW2). In particular, using (PSd) with b=1/4 we have 

 x-qt=ζ(1-ζ2)t2/[1+(1+(1-ζ2) 2t2)1/2]+0.5ln(1+2ζ/(1-ζ)),  

v=(1-ζ2)t/[1+(1+(1-ζ2) 2t2)1/2]. 

This is the solution of (SW2) with initial conditions ζ(x,0)=tanh x, v(x,0)=0. Let q=0. For 

x<<1 we have ζ≈x/(1+t2)1/2 and v≈t/[1+(1+t2)1/2]. The maximum of v(x,t) is at x=0 and 

increases from 0 to 1 when t increases from 0 to infinity.  

Fig. 1 shows the position of the interface for t=0, 2, 3 and 4. 
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