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Withdrawal through non-rectangular channels 

By A. Odulo and J.C. Swanson 

 

Abstract: Withdrawal of a homogeneous inviscid fluid from a large basin into an empty large basin 

through a constriction, whose slope and cross-sectional area vary in an arbitrary manner, is considered. 

Geometrical and algebraic methods to find the water discharge are presented. 

Analytical solutions for particular channels, whose width varies with both depth and along channel 

distance, and where the sill and the narrows do not coincide, are found. They illustrate the influence of the 

channel geometry on the discharge, the position of the critical point, and the water velocity at the critical 

point. The theory allows us to predict the withdrawal discharge through natural constrictions and to design 

constrictions with specific withdrawal properties. 

The theory is also valid for salt-water withdrawal into a basin with fresh water (reduced gravity model), 

if the free surface is flat and, as result, the upper layer is motionless. It gives an upper limit for the discharge 

of the denser fluid in the case of a two-layer exchange flow. Also presented is the solution for a lighter fluid 

run up over a stationary denser layer, which gives an upper limit for the discharge of the lighter fluid in the 

case of a two-layer exchange flow. 

Solution for one layer flow gives particular solutions for a multi-layer flow as well. 

Keywords: withdrawal; non- rectangular channel; critical point 

 

1.Introduction 

The determination of the discharge of a fluid flowing through a constriction is relevant to many 

engineering activities (Bakhmeteff 1932; Chow 1959; Ackers et al., 1978). It is also important for 

understanding and predicting flows through constrictions in estuaries and through straits (Bormans & 

Garrett 1989; Dalziel 1992; Baines, 1995, Pawlak & Armi 1997).  
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Ackers et al. (1978), as did the authors of most of the previous works, considered channels in which the 

sill and the narrows coincide. In this case the along channel geometry has no influence on the discharge, the 

position of the critical section is known a priori and the solution can be found in textbooks (i.e. Chow, 1959, 

§ 3-3). In natural channels the position of the narrowest section does not usually coincide with the position 

of the sill, nor the shape of the cross-section is unvaried along the channel. In this case, the analysis of flow 

becomes difficult because the position of the critical point is part of the problem and its position cannot be 

determined easily. We shall show that the wrong choice of the critical point can lead to significant error in 

the prediction of the discharge. For similar cross-section channels (see §3 bellow) the position of the critical 

point depends only on the along channel geometry and can be found as discussed in Gill (1977, §2). 

Wood (1968, 1978), Wood & Lai (1972) dealt with the case of withdrawal of the two-layer fluid through 

a rectangular section channel. 

The withdrawal of homogenous fluid from a large basin is a particular case of an exchange flow 

between two large basins with fresh and salt water (see Appendix). Exchange flows through a rectangular 

channel were intensively studied (Wood 1970, Baines 1995, § 3.11). The analytical solution for a 

rectangular channel was obtained for exchange flow through a contraction (Odulo et al. 1997a) and over a 

sill (Odulo et al. 1997b). Odulo & Swanson (1998) considered an exchange flow through a rectangular 

channel, whose width and depth vary along the channel in an arbitrary manner. Dalziel (1992) studied the 

exchange of a two-layer flow through a constriction with a non-rectangular section. For parabolic cross-

section he calculated the layer discharges and presented analytical results for the limits when one or the 

other layer was brought to rest.  Bormans & Garrett (1989) provided numerical calculations, which showed 

that “using triangular instead of rectangular cross-section raises the interface everywhere along the strait”.  

In this paper withdrawal from a basin filled with a homogeneous inviscid fluid into an empty basin (or 

into a basin filled lighter fluid with the same level) through a constriction, whose slope and cross-sectional  
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Figure 1 (a) Side view of flow through a constriction with geometry h(x)=H tanh2(5x/4) and  

b(x,0)=b0[4-3/e(x-1)^2] in the region –1<x<2; b(x) infinitely increases at x→±∞. The solid line shows the 

water surface for a withdrawal from the left basin, the dash line for a withdrawal from the right basin. 

Calculations were made using (3.17). (b) Top view of the channel at the level z=0.  (c) Scheme of channel 

cross-section. 

 

area vary in an arbitrary manner, is considered. The basin width is infinitely large far from the constriction. 

A channel depth has a minimum at a position, called a bottom crest (or sill), and increases with distance 

from it (figure 1a). The channel width changes along a channel (figure 1b) and with depth (figure 1c). 

Generally, at different depths the channel has a minimum width at different positions along the channel (see 

example in §5 bellow). We define as the narrows the most distant position of such minimum widths from 

the crest, and denote the distance between the crest and the narrows as L. 

The x-axis points along the channel from the bottom crest to the narrows. The z-axis points vertically 

downwards. The origin is at the level of the fluid in the basin and located above the bottom crest (figure 1a). 

The basin cross-section area S(x,z) is infinitely large far from the constriction. 

It is important to point out the difference between a free outflow from a large basin and a flow initiated 

by a towed obstacle in a prismatic channel (Baines 1995) or a jet running over an obstacle (Ohtsu et al. 

1996). In the latter cases the speed of the fluid relative to the obstacle can be arbitrary. Depending on 

upstream and downstream conditions and the obstacle size, different regimes are possible (e.g. figure 2.11 in 

Baines 1995, and figure 1-2 in Ohtsu et al. 1996). If a steady regime can be achieved (in the system 

coordinates moving with an obstacle in the case of a towed obstacle), the discharge (the volume flux) Q is 

the product of the towed obstacle velocity (or the jet velocity) and the fluid section far upstream. The 

discharge does not depend on the geometry of the obstacle. In the withdrawal case, the discharge depends 

only on the channel geometry and the water surface level in the basin measured from the bottom crest 
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datum, H. The fluid velocity at the bottom crest cannot exceed (2gH)1/2. So we have a very rough estimation 

of the discharge: Q<(2gH)1/2S0. Here S0 is the flow area at the bottom crest. 

The mass conservation law 

   S(x,ζ)u(x)=Q      (1.1) 

can be considered as the definition of the average velocity of the flow, u(x). Here S(x,ζ) is the fluid cross-

section area (figure 1c), ζ(x) is the water surface drop from the upstream water level (figure 1a) and Q is the 

discharge (which is constant for steady flow). It is convenient to use the water surface drop, ζ, as the 

dependent variable instead of the water depth. The second equation we use is the Bernoulli equation (Chow 

1959, p.40) 

u2=2gζ.       (1.2) 

Here g is the gravitational acceleration (in the case of a withdrawal into an empty basin) or the reduced 

gravitational acceleration (in the case of flow of salt water into a fresh water basin with the same level). In 

the latter case ζ is the depth of the interface. It is common to use the mass conservation and Bernoulli’s laws 

for steady flows in open channels (e.g. Baines, 1995, Eq. (2.3.40)-(2.3.41)). However, the solutions for 

channels, whose cross-section area shapes vary along the channel, and the bottom crest and the narrow do 

not coincide, are found in this paper for the first time. 

If u(x) is an average velocity defined by (1.1), then (1.2) is an approximation. The Bernoulli equation 

(1.2) is valid under assumptions that the vertical and cross channel components of the velocity are much 

smaller than the along channel component, the velocity is uniform over the channel section and that friction 

is negligible. Real flows are three-dimensional and frictional. Therefore, the disagreement between the 

experimental values and the theoretical ones always exists, unless the errors in measurements compensate 

for it. Introducing empirical correction coefficients can minimize disagreement between the predictions and 

experimental data (Ackers et al. 1978). The empirical correction coefficient is useful for practical purposes, 

but does not clarify the physics, because it takes account of all neglected effects combined. 
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Equations (1.1) and (1.2) contain two unknown functions, u(x) and ζ(x), and unknown discharge Q. To 

solve the problem, one more condition is required. The obvious requirement is decreasing the water depth to 

0 in an infinitely wide basin downstream. It will be shown in § 3.3 that the continuous solutions do not exist 

for some channel cross-sections.  

Far upstream, the water surface drop and water velocity are zero. One can say that (1.2) describes the 

transformation of potential energy into kinetic energy. 

Many authors have discussed the influence of friction on flow by adding to the Bernoulli equation (1.2) 

a frictional term (e.g. Baines 1995, Eq. (2.3.57)). Such a parameterization of friction was successfully used 

for flows in channels with a sloped bottom. For the withdrawal problem, it is preferable to use “the effective 

flow area” concept (Wood 1970, p. 673; Ackers et al. 1978, Eq. (2. 10) p. 36) or to use the correction 

coefficients (Ackers et al. 1978, Eq. (8.9), p 171). 

The purpose of this paper is to determine the withdrawal discharge of one-layer flow through a non-

prismatic channel of variable slope.  

 

2. General solution 

(a) Equation for the water surface profile 

Consider steady free outflow from a large basin through a channel whose width, b(x,z/(H+h(x))), varies 

with both depth (figure 1c) and along channel distance (figure 1b). The water cross-section area is (figure 

1c) 

  S(x,ζ)= ∫
+

+
)(

)))(/(,(
xhH

dzxhHzxb
ζ

.     (2.1) 

Here h(x) is the depth of the lowest point of the channel section measured from the bottom crest level. The 

bottom crest is at x=0, h(0)=0 (figure 1a). 

Eliminating u from (1.1)-(1.2) we get 

  ζ1/2S(x, ζ)=Q/(2g)1/2.       (2.2) 
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For a given geometry (H+h(x), b(x,z`)), this equation determines the water surface profile ζ(x). Here 

z`=z/(H+h(x)).  

The problem is to determine the discharge Q such that ζ(x) changes continuously in the flow direction 

from the upstream value 0 to the downstream value H+h(∞) for a flow from the left basin, or to the 

downstream value H+h(-∞) for a flow from the right basin. 

(b) Geometrical solution. 

Denote the right side of the equation (2.2) as F(x,ζ) 

  F(x,ζ)= ζ1/2S(x,ζ).       (2.3) 

One can call F(x,ζ) the specific discharge surface by analogy to the specific energy curve [figure 30 in 

Bakhmeteff (1932); figure 3-2 in Chow (1959)]. This function is determined in the domain -∞<x<∞, 

0≤ζ≤H+h(x). It is equal to 0 at ζ=H+h(x) (see (2.1)) and at ζ=0, F(x,H+h(x))=F(x,0)=0, and infinitely 

increases far upstream and downstream, F(-∞,ζ)→∞, F(∞,ζ)→∞. Thus, if the surface F(x,ζ) has a unique 

critical point (xc,ζc), then (xc,ζc) is a saddle point. Equation (2.2) has a continuous solution ζ(x), which 

changes from 0 to H+h(∞) [or H+h(-∞) ] in the flow direction, only if 

  Q=(2g)1/2F(xc,ζc).       (2.4) 

If Q is larger than (2g)1/2F(xc,ζc), then equation (2.2) has no solution in the neighborhood of xc. If Q is 

less than (2g)1/2F(xc,ζc), then equation (2.2) has two solutions. One of them tends to 0 far upstream and 

downstream, ζ(x)→0 when x→±∞; the other tends to H+h(x) far upstream and downstream, 

ζ(x)→H+h(±∞) when x→±∞. Neither solution has physical meaning for the problem considered here. 

The intersection of the plane y=F(xc,ζc) with the surface y=F(x,ζ) forms two curves intersecting at the 

saddle. The projection of these curves on the x,ζ plane (called level curves or contour lines) gives the 

solution for a flow from the right basin (dashed line in figure 1a), and the solution for a flow from the left 

basin (solid line in figure 1a). 
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 Note that the water surface has a different shape for the flow in the direction from the bottom crest to 

the narrows compared with flow from the narrows to the bottom crest. 

For an arbitrary channel geometry one can find the critical point of function F(x,ζ) by drawing a family 

of level curves (contour lines) to find two curves, which intersect at the saddle. The value of F(x,ζ) at the 

saddle multiplied by (2g)1/2 gives the discharge (see 2.4). This is the geometrical solution. Compare with 

Chow (1959), p.p. 46-47, where "non-prismatic channel with variable slope is taken as an example, in which 

a gradually varied flow is carried from a sub-critical state to a supercritical state (figure 3-5)" 

(c) Algebraic solution 

To better understand the properties of the flow and the effect of the channel geometry on the flow 

discharge, we have to find algebraic (preferably analytic) solutions. To simplify the algebra, we represent a 

channel width as function of x and z`, not x and z, and introduce the relative water surface drop 

  ξ=ζ/(H+h(x)).        (2.5) 

Then (2.2) takes the form 

  ξ1/2s(x, ξ)(H+h(x))3/2=Q/(2g)1/2.     (2.6) 

Here 

  s(x,ξ)= ∫
1

')',(
ξ

dzzxb .       (2.7) 

Denote the right side of the equation (2.6) as F(x,ξ) 

  F(x,ξ)=ξ1/2s(x,ξ)(H+h(x))3/2.      (2.8) 

We consider this function in the domain -∞<x<∞, 0≤ξ≤1. Obviously, the saddle points of F(x,ξ) and F(x,ζ) 

occur at the same positions, xc, and ζc=(H+h(xc))ξc. The saddle point, (xc,ξc), of F(x,ξ) is the solution of the 

system Fξ=0 and Fx=0. This system can be written in the form 

  s(xc,ξc)=2ξcb(xc,ξc)       (2.9) 

and 
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  ∫
1

'''
c

dzS x
ξ

=0.        (2.10) 

Here S''(x,z`)=(H+h(x))3/2b(x,z`). The problem is reduced to a system of two algebraic equations (2.9) and 

(2.10). If we suppose, that this system has a unique solution (xc,ξc), then solving the system (2.9)-(2.10) we 

can calculate the discharge 

  Q=(2g)1/2F(xc,ξc).       (2.11) 

Using (2.6), (2.7) and (2.9) one gets 

  F(xc,ξc)=2ζc
3/2b(xc,ξc).      (2.12) 

From (2.6) and (2.8) we have ξx=-Fx/Fξ. Thus the system (2.9)-(2.10) can be also obtained from the 

condition that both numerator and denominator of the expression for ξx are zero at the same point (xc,ξc) 

(method of singular points Chow, 1959, § 9-6; Baines, 1995, p. 45-46). We shall show below (§ 3.4) that ξx 

can be 0, finite or infinitely large at the critical point. By definition, the critical point is the point where Fx=0 

and Fξ=0. 

Thus, in general, the problem is solved. For any geometry, given analytically or in a table, one can 

graphically or analytically find the value of F(x,ξ) at a saddle point and then the discharge from (2.11). 

Below we present analytical solutions for particular geometries to illustrate the dependence of the discharge 

on the channel geometry. 

Equations (2.6), (2.9) and (2.10) correspond to equations (3.1)-(3.3) in Gill (1977). From (2.9) and (2.2) 

we get the well-known expression for the discharge Q=(g)1/2Z (see Eq. (8.5) in Ackers et al. 1978). Here 

Z=(S3(xc,ζc)/b(xc,ξc))1/2 is the section factor (see Chow 1959, Eq. (2-3) and Table 2-1). 

(d) Geometrical interpretation and discussion 

Because S''x<0 for x<0 and S''x>0 for x>L for all z`, it follows from (2.10) that xc lies between a sill and 

a narrows. So, to find the critical point we have to know H+h(x) and b(x,z`) only between the sill and the 

narrows. In § 5 we present an example of the channel geometry, for which, at different depths, S''x=0 at 
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different positions along the channel. If for all z` the width b(x,z`) has a minimum at the bottom crest, L=0, 

then the solution of (2.10) is xc=0, and ξc is found from (2.9) with xc=0. 

Equation (2.9) has a simple geometrical interpretation. At the critical position, xc, the water surface drop 

is such that the area of the fluid section, S(xc,ζc), equals the area of a rectangle with a base equal to the top 

width, b(xc,ξc), and a height equal to twice the water surface drop, ζc. 

Introducing the average width of the fluid section area bav(x,ξ)=s(x,ξ)/(1-ξ), we can rewrite (2.9) in the 

form ξc=β/(2+β), where β=bav(xc,ξc)/b(xc,ξc). So, if, at the critical point, the average width of the water area 

is less than the top width, β<1, then the water surface drop is less than one half of the fluid depth, ξc<1/3 (in 

agreement with the conclusion of Bormans and Garrett (1989), p. 1549). Remember, that ξc=1/3 for a 

rectangular cross-section. 

We introduce the hydraulic depth D as the ratio of the water area S(x,ζ) to the top width b(x,ξ), 

D=S(x,ζ)/b(x,ξ) (see Chow, 1959, equation (2-2) and Table 2-1). The local Froude number is defined as 

Fr2=u2/(gD) (Baines (1995), Eq. (2.3.44)). Using (1.2) we get Fr2=2ξb/s. The relative water surface drop ξ 

increases from 0 upstream to 1 downstream and s(x,ξ)/b(x,ξ) decreases from some value upstream to 0 

downstream. Therefore the local Froude number Fr(x,ξ) changes from 0 downstream to infinity upstream. 

The assumption that ξ, s and b continuously change in the flow direction leads to the conclusion that it must 

be at least one point x where Fr=1. We determined the local Froude number in a such way that it is equal to 

1 at the critical point, Fr(xc,ξc)=1 (see Eq. (2.9)). We can equivalently say that at xc the hydraulic depth is 

twice the water surface drop, D=2ζ. This corresponds to the definition of critical flow in Chow (1959), p. 

43. 

If the values of S(0,ζ(0)), S(xc, ζ(xc)) and S(L,ζ(L)) differ significantly, the error in calculation of xc can 

lead to a significant error in Q. 

(e) Approximation of the channel geometry 
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Our goal is to predict the discharge through a channel of arbitrary geometry. For natural channels we 

have to extrapolate from the measured data of the channel geometry. Then we can find the saddle point of 

the function F(x,ξ) geometrically. Or we can approximate the channel geometry analytically and try to solve 

the system (2.9)-(2.10). These extrapolations and approximations can be made many different ways. We 

need criteria for good extrapolations and approximations. Thus we have to understand which characteristics 

of the geometry influence the value of F(xc,ξc) and, as a result, the discharge Q. Also, we shall approximate 

the channel geometry in the form, which allow us to solve the system (2.9)-(2.10) analytically.  

Only the geometry of the channel between the bottom crest and the narrows influences the discharge. 

Therefore we have to extrapolate and approximate the channel geometry only in the interval (0,L). This 

means that it is sufficient to consider the function F(x`,ξ) only in the interval 0<x`<1. We denote x`=x/L. 

Further, we shall drop the superscript ` over x. Remember that if L=0, then xc=0, and the knowledge of 

b(0,z`) is needed only. 

If we take b0b(x,z`) instead b(x,z`), the system (2.9)-(2.10) will not change (b0 is a constant). Therefore, 

xc and ξc do not depend on b0 and Q is proportional to b0. We can take b(1,0)=1 without losing generality. 

The system (2.9)-(2.10) can not be solved analytically for arbitrary b(x,z`). We limit our study to the 

approximations of b(x,z`) in the form, which includes a wide class of geometries, 

  b(x,z`)= bb(x)+b1(x)(1-z`)m.     (2.13) 

As before, z`=z/(H+h(x)). The geometrical meaning of each term is as follows: bb(x) describes the change of 

the bottom width along the channel; bb(x)+b1(x) describes the change of the channel width at the level of 

water in the basin (e.g. figure 1b). The power m defines the behavior of the channel width with depth (e.g. 

figure 2a). If m=1, the width decreases linearly with depth (trapezoidal channel); m=0 and m=∞ give 

rectangular sections. Note that the shape of the channel sides plays no role (Dalziel 1992, p. 1189). Only the 

distance between them, b(x,z`), matters (figure 1c; see equivalent figure 2.13 in Baines 1995). 

We shall obtain analytical solutions for the channels with following cross-sections: 

a) Channels with similar sections: bb(x)=(1-a)b’(x), b1(x)=ab’(x); 
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b) Channel sections with bb(x)=b’(x), b1(x)=a; 

c) Geometry with trapezoidal sections which transform from triangular to rectangular: bb(x)=(1-x) 2/a, 

b1(x)=x2; m=1, h(x)=0. 

The width of these channels can be written in the following forms: 

  b(x,z`)=b’(x)B(z/(H+h(x)),      (2.13a) 

  b(x,z`)=b’(x)+B(z/(H+h(x)),      (2.13b) 

  b(x,z`)=(1-x)2/a+x2(1-z/H).      (2.13c) 

The first case gives an example when the left side of equation (2.2) has the form F(x,ξ)=S’(x)f(ξ). Thus xc 

and ξc can be found as positions of the minimum of S’(x) and the maximum of f(ξ). For the last two cases 

both equations (2.9) and (2.10) contain the unknowns xc and ξc and the problem becomes more complicated. 

Therefore, the first attempt has to be made to approximate the channel geometry in the form (2.13a). 

 

3. Channels with similar sections: b(x,z`)=b’(x)B(z`) 

(a) General solution 

If the channel section can be approximated in the form (2.13a), then the problem to find the critical point 

of a surface is reduced to the problem of finding the critical points of two curves. The system (2.9) and 

(2.10) separates into two independent equations: 

  s’(ξc)=2ξcB(ξc),       (3.1) 

to find ξc, and 

  S’x (xc)=0        (3.2) 

to find xc. Here  

  S’(x)=(H+h(x))3/2b’(x)      (3.3) 
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Figure 2. Channel section areas whose widths vary with depth as: (a) B(z`)=1-a+a(1-z`)m with a=0.6, and 

m=1/2, 1, 2. (b) B(z`)=1-a+a tanh(40(z`-b)) with a=.4 and b=0.15, 0.2 and 0.3. (c) B(z`)=1 for 0<z`<0.2 and 

B(z`)=0.2 for 0.2<z`<1. 
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and 

  s’(ξ)= ∫
1

')'(
ξ

dzzB        (3.4) 

The value of ξc depends only on the variation of B with z'. Mathematically, the problem to find ξc from (3.1) 

is identical to the problem to find the critical state of flow in a prismatic channel (Chow, 1959, § 3-3). To 

minimize the error due to the approximation, the channel width at the free surface and the flow cross-section 

area must be approximated accurately. The shape of the channel section at ξ<1/3 never plays any role as 

long as the flow cross-section area stays the same. The position xc depends only on the along channel 

geometry (the position of the minimum of (H+h(x))3/2b’(x)). The problem to find the position of the critical 

section is the same for any channel section shape, in particular for a rectangular channel (Gill, 1977, § 2). 

For channel geometry (2.13a) equation (2.6) takes the form 

ξ1/2s’(ξ)=(Q/(2g)1/2))/S’(x).      (3.5) 

The left side of (3.5) is a function of ξ only. The right side of (3.5) is a function of x only. If the function 

f(ξ)=ξ1/2s’(ξ), 0<ξ<1, has a unique maximum fc, at ξ=ξc, (dash line in  figure 3a), and the function S’(x) has 

a unique minimum S’c, at x=xc, (1/S’(x) is shown in figure 3b), then there is a unique discharge 

Q=(2g)1/2fcS’c,        (3.6) 

for which equation (3.5) has a continuous solution ξ(x) for all x such that: ξ increases from 0 to ξc, when 

S’(x) decreases from ∞ to S’c, upstream of xc; then ξ increases from ξc to 1, when S’(x) increases from S’c  

to ∞, downstream of xc (see figure 3a,b). All geometries with the same maximum of f(ξ) and the same 

minimum of S’(x) have the same discharge. 

If f(ξ) has more than one local maximum in the interval 0<ξ<1 (figure 3c) and the function S’(x) has a 

unique minimum S’c, (as in figure 3b), then the continuous solution ξ(x) of equation (3.5) is multi-valued. 
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Figure 3. Graphs of f(ξ) and 1/S’(x) (see (3.5)): (a) for the cross-section shown in figure 2(b); (b) for the 

channel geometry shown in figure 1a,b; (c) for the cross-section shown in figure 2(c); (d) for the channel 

geometry used by Helfrich (1995, Eq. (19)-(20)). (e) The area (shaded) of the parameters a and b for which 

a continuous solution of (3.5) does not exist for the channel section B(z`)=1 for 0<z<b and B(z`)=a for 

b<z<1. 



16 

If f(ξ) has a unique maximum and the function S’(x) has several local minima, (as in figure 3d) then the 

continuous solution ξ(x) of the equation (3.5) is non-monotonic. Experiments can resolve if this solution has 

a physical meaning. 

In general, by drawing the functions f(ξ) and 1/S’(x), one finds f(ξc) and S’(xc) graphically. 

(b) Analytical solution 

 Channel with parabolic cross section. Consider the channel section of the form (figure 2a) 

  B(z`)=1-a+a(1-z`)m.       (3.7) 

Here a and m are constants. In this case the solution ξc(m,a) of (3.1) in the implicit form is 

  (1-a)/a=(1-ξc)m(2m+3-1/ξc)/((m+1)(1/ξc-3)).    (3.8) 

Let 0<a<1 and m>0. Then ξc(m,a)→1/3 when m→0,∞ and 2m+3>1/ξc(m,a)>3. The graphs of the non-

dimensional thickness of the flowing layer ηc(m,a)/(H+h(xc))=1-ξc(m,a) are shown in figure 4a (heavy 

lines). 

The discharge is 

  Q(a,m)=Qr(1-a)/(1-(1/ξc-3)/2m).     (3.9) 

Or, alternatively, 

  Q(a,m)=Qr2am(1-ξc)m/((1/ξc-3)(1+m)).    (3.10) 

Here Qr(xc,ξc)=(2g)1/2S’(xc)ξc
1/2(1-ξc) and ξc is determined by (3.8). The graphs of 

q(a,m)=Q(a,m;xc)/(2g)1/2S’(xc) vs. m and a are shown in figure 4b (heavy lines). 

If a (or m) is zero (the rectangular section profile) then ξc=1/3 and q(0,m)=q(a,0)=qr ≈0.3849. 

If a=1 (zero bottom width) then ξc=1/(2m+3) and q(1,m)=2[2(m+1)]m/(2m+3)m+1.5 (in agreement with 

(24) in Dalziel (1992)). When m increases from 0 to infinity, the top width B(ξc), the water surface drop ξc 

and the non-dimensional discharge q decrease from 1, 1/3 and 2/271/2 to 1/e1/2, 0 and 0, respectively. If m=1 

(triangular channel section) we have ξc(1,1)=1/5 and q(1,1)≈0.1431. 
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Figure 4. Graphs of (a) the thickness of the moving layer ηc and (b) the non-dimensional discharge q vs. 

a for the geometry b(x,z`)=b(x)[1-a+a(1-z`)m], m=0.5, 1, 2, 5. Heavy lines are for a withdrawal (see (3.8), 

(3.10)); light lines are for run up (see (A.6), (A.7)). 

Calculations show (figure 4b), that q(a,m) is almost a linear function of a and the approximate formula 

q(a,m)≈0.3849[1-C(m)a] can be used. Here 
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   C(m)=1-[(m+1)/(m+1.5)]m/(1+2m/3)1.5.    (3.11) 

In particular: C(0)=0, C(1)≈0.6282, C(∞)=1. For a trapezoidal section, m=1, we have ξc=(2-

a)/(3+(4+5(1-a)2)1/2) and q=2(1-a) ξc
3/2(1-ξc)/(5ξc-1) ≈ 0.3849(1-0.6282a). 

Discussion. Larger a and/or m correspond to a smaller channel section area. Figure 4 shows that q(a,m) 

is a decreasing function of a and m and ηc(a,m) is a increasing function of a. But ηc(a,m) is not a monotonic 

function of m. The relative water surface drop ξc(a,m) (and as result the water velocity at the critical point, 

u2(xc)=2g(H+h(xc))ξc), tends to the maximum value when m→0,∞ and reaches the minimum for a certain 

value of m(a). 

Exponential along channel geometry. A wide family of along channel geometries can be approximated 

in the two-parametric (α>0 and c>0 are arbitrary parameters) form  

h(x)/H=-1+exp[2αcx2/3],  b’(x)=exp[c(1-x)2].    (3.12) 

For this geometry (3.2) becomes the linear equation and the solution is xc=1/(1+α). The parameter α 

characterizes how fast the depth changes with width (α=0 corresponds to a pure contraction, α→∞ 

corresponds to a pure sill).  It illustrates that the critical point is closer to the crest if the width changes more 

slowly than the depth and vice versa. 

Discussion. If the channel geometry can be approximated in the form b(x,z`)=b0[1-a+a(1-z`)m]exp[c(1-x)2], 

h(x)/H= exp[2αcx2/3]-1, Hz`=z exp[-2αcx2/3], then the discharge is 

Q≈Qr[1-C(m)a]exp[cα/(1+α)].     (3.13) 

Here Qr=(8gH/27)1/2Hb0 is the discharge through a rectangular section channel with the minimum width b0 

at the sill. Roughly speaking, the second term in (3.13) decreases the discharge due to the decrease of the 

cross-section; the last term in (3.13) increases the discharge due to the fact, that the sill and the narrows do 

not coincide. Their product could be close to 1, and usage of the incorrect formula Q=Qr can accidentally 

give a good result. 

For geometry (3.12) with Q given by (3.6) we can solve (3.5) in implicit form 
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  (1+α)x=1-α/2±[α2/4+((1+α)/c)ln(f(ξc)/f(ξ))]1/2.   (3.14) 

Here f(ξ) is the left side of (3.5), signs +/- are for the flow upstream/downstream of xc. For any B’(z`) one 

can draw the water surface profile ζ(x) using (3.14).  

(c) Examples of channel sections for which a solution does not exist 

There are several examples of channel cross-sections, for which f(ξ) has more than one local maximum 

in the interval 0<ξ<1 (figure 3c and dash lines in figure 3a). If the function S’(x) has a unique minimum S’c, 

(as in figure 3b), then the continuous single-valued solution ξ(x) does not exist. 

The channel section with B(z`)=1 for 0<z`<b and B(z`)=a<1 for b<z`<1 (figure 2c) gives an example of 

the geometry for which f(ξ) has two local maxima (figure 3c) for a certain range of the parameters a and b 

(figure 3e). The solution of (3.1) can be easily found: ξc=1/3, q=2a/271/2 if b<a/(2+a) and ξc=(a+b-ab)/3, 

q=2[(a+b-ab)/3]3/2 if b>1/3. Here q=Q/(2g)1/2S’(xc).  If a/(2+a)<b<1/3 (shaded area on figure 3e) the 

continuous solution ξ(x) does not exist. 

Figure 2b shows other examples of the channel cross-sections, for which f(ξ) has two maxima (figure 

3a).  

(d) The water surface profile 

Parabolic cross-section. Substituting (2.11) into (2.6) gives the equation for the water surface profile 

ξ(x) 

  ξ1/2s(x,ξ)(H+h(x))3/2=F(xc,ξc).      (3.15) 

This equation does not contain g. This means that the shape of the free surface of the fluid flowing into an 

empty basin and the shape of the interface of the fluid flowing into a basin of lighter fluid with the same 

level are identical. 

For a channel cross-section defined by (2.13a) and (3.7) the equation (3.15) gives 

ξ1/2(1-ξ)[1-a+a(1-ξ)m/(m+1)]=qS’(xc)/S’(x).    (3.16) 
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Here q=2ξc
3/2[1-a+a(1-ξc)m]. Having xc and ξc, we can calculate ξ(x) from (3.16) and find the velocity 

u(x)=[2g(H+h(x))ξ(x)]1/2. We can not solve (3.16) analytically for arbitrary a, m and S’(x). We shall give an 

explicit solution for a rectangular profile channel and arbitrary S’(x) to discuss the behavior of the water 

surface at the critical point. 

Rectangular cross-section and arbitrary along channel geometry. For a rectangular profile (a=0, 

q=2/271/2) we can solve (3.16) explicitly 

  ξ(x)=(4/3)sin2θ.       (3.17) 

Here θ=(arcsin ϕ(x))/3 upstream of xc, θ=(π-arcsin ϕ(x))/3 downstream of xc and ϕ(x)= S’(xc)/S’(x). If S’(x) 

has a unique minimum (figure 3b), (3.17) shows that ξ(x) is a monotonic function, but ζ(x) can have several 

local extrema. An example of ζ=(H+h(x))ξ for the geometry h(x)/H=tanh2(5x/4), b(x)=4-3/e(1-x)^2 is shown 

in figure 1a. 

For arbitrary along channel geometry S’(x) we have from (3.17) 

  ξx(x)=(4/9) [ϕ x /(1-ϕ2)1/2 ] sin2θ.     (3.18) 

In the neighborhood of xc we can approximate 

  ϕ (x)≈1-a0 xc-x k  k>1.     (3.19) 

Here a0>0 is a constant. This leads toϕ x(x)≈ ka0 xc-x k-1 and ξx(x)∼ xc-x -1+k/2. Therefore ξx(xc) is zero 

if k>2, is finite only if k=2 (see note after (3.4) in Gill (1977)) and is infinite if 1<k<2. So the water surface 

slope at the critical point can be 0, finite or infinitely large. 

Example. For the channel geometry (1+h(x)/H)=(1+ x k)1/6 and b(x)/b(0) = (1+ x k)1/4 we get xc=0 

and ϕ(x)=(1+ x k)-1/2. Thus ϕ x /(1-ϕ2)1/2=0.5kx-1+k/2 

/(1+ x k) and ξx(x)∼ x-1+k/2 for x→0. This is the example of geometry with [1+h(x)/H]3= [b(x)/b(0)]2 (see § 

3.2 in Odulo & Swanson, 1998). 

(e) Dependence of the discharge on the fluid level in the basin 
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In this subsection we discuss how the discharge depends on the fluid level in the basin, H, when h(x) 

and b’(x)B(z`) stay unchanged. If the sill and narrows coincide, then xc=0 and the discharge 

Q0=(2g)1/2f(ξc)b0H3/2. For the rectangular section profile B(z`)=1, f(ξc)=2/271/2. In this subsection we 

introduce the non-dimensional discharge as q=Q/Q0.  

The relation between xc and H we find from (3.2) 

  H=-h(xc)-1.5 b’(xc)hx(xc) /b’x(xc)    (3.20) 

We see that xc→0 when H→0, and xc→1 when H→∞. So for arbitrary h(x) and b’(x) we get the position of 

the critical point xc(H) from (3.20) and then the non-dimensional discharge q(H)=(1+h(xc)/H)3/2b’(xc). We 

see that q→b’(0) when H→0 and q→b’(1) when H→∞. 

Example. We approximate the channel geometry by power functions: h(x)=xn and b’(x)=1+(1-x)k, n>1, 

k>1. It is seen that 0<xc<1. The large n corresponds to the geometry with an almost flat bottom at the major 

part of the constriction and a rapidly increasing depth near the narrows. Similarly, the large k corresponds to 

geometry with almost uniform width at the major part of the constriction and a rapidly increasing width near 

the sill. The larger (smaller) the H the smaller (larger) the channel depth at the narrows compared with the 

water level in the basin. We get from (3.20) the expression for xc(H;k,n) in implicit form 

H=[-xc+1.5(n/k)(1-xc)(1+1/(1-xc)k)]xc
n-1.    (3.20) 

The non-dimensional discharge is 

q(H, k,n)=[1+xc
n/H]3/2[1+(1-xc)k].     (3.21) 

Discussion. We see that q→1 for large H and q→2 for H→0. For small H we have H ≈ (3n/k) xc
n-1. For 

small H and n=2 we see that xc(H) is linear function and q(H,2,k)≈2(1-Hk2/24). Figure 5 shows xc(H;k,n) 

and q(H;k,n) vs. H for (k,n) = (1.5,1.5), (4,1.25), (2,2), (2,4), (4,2) and (4,4). The channel section areas at 

the crest and at the narrows are the same for the geometries considered (for any n and k). But channels with 

different section transformation between the crest and the narrows (different n and k) have significantly 

different discharge (figure 5). For example, q(H,2,2)/q(H,4,4)≈3/2 in interval 0.5<H<1. Designing channels 
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with different along-channel geometries, one gets the constrictions with different withdrawal characteristics 

q(H). 
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Figure 5 Graphs of the position of the critical point xc(H;k,n) (light lines) and the non-dimensional discharge 

q(H;k,n) (heavy lines) vs. H for the geometry h(x)=x2n and b’(x)=b0(1+(1-x)2k) with (k,n)= (1.5,1.5), 

(4,1.25), (2,2), (2,4), (4,2) and (4,4). 

 

Figure 5 shows that q(H;k,n) can be approximated as linear functions of H at certain intervals, for example, 

q(H,2,2) ≈ 2-H/3 for 0<H<1. Such simple approximate formulae can be used to solve some unsteady 

problems, for example, to find the decrease of the water level of the emptying basin, H(t), and the 

withdrawing discharge, Q(t). Here t is time.  

In the case of a withdrawal into a basin with a lighter fluid, changing of the level in the emptying basin 

will change not only H but also, more importantly, will change the difference between basin levels. If the 
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density difference is small, then a small change of the level difference leads to a significant difference of 

flow (Wood 1970, Odulo & Swanson 1998). 

 

4. Channels with the cross-section b(x,z`)=b’(x)+B(z`) 

Now we shall study the more complicated case of channel geometries with non-similar sections. To get 

an analytical solution we consider the channel geometries, which  

can be approximated in the form (2.13b). In (2.13b) the first term, b’(x), describes the change of width along 

the channel. The second term, B(z`), describes the change of width with depth. Let B(1)=0, then b’(x) is the 

bottom width. 

(a) General solution 

This geometry gives an example when the position of the critical point depends on both an along 

channel geometry and a cross-section shape. For geometry (2.13b) the system (2.9) and (2.10) becomes 

  (1-3ξc)b’(xc)= 2ξcB(ξc)-s’(ξc)      (4.1) 

  γ(xc)=1+Bav(ξc)/b’(xc)       (4.2) 

Here s’(ξ)= ∫
1

)(
ξ

dzzB , Bav(ξc)=s’(ξ)/(1-ξc), γ(x)=-1.5b’hx/[b’x(H+h)]. For a rectangular channel B(z`)=0, so 

(4.1)-(4.2) give ξc=1/3 and γ=1. Note that equation (3.2) can be written in the form γ=1. 

We introduce λ(xc,ξc)=b’(xc)/B(ξc) and µ(ξc)=Bav(ξc)/B(ξc). For the rectangular section profile µ=1. If 

the channel width decreases with depth then µ<1. We can rewrite (4.1) and (4.2) in the form 

  ξc=(λ+µ)/(3λ+2+µ),       (4.3) 

  (γ(xc)-1)λ=µ.        (4.4) 

From (4.3) we see that ξc=µ/(2+µ), when λ=0, and then increases and tends to 1/3, when λ infinitely 

increases. For a parabolic cross section channel, B(z`)=B0(1-z`)m, we get Bav(z`)=B(z`)/(m+1) and 

µ=1/(m+1). 
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Taking ξc from 0 to 1/3 one can solve the system (4.1)-(4.2) numerically for any B(z`). 

(b) Parabolic cross section 

If B(z`)=B0(1-z`)m, then (4.1)-(4.2) becomes 

  b’(xc)/B0=(1-ξc)m(2m+3-1/ξc)/((m+1)(1/ξc-3))   (4.5) 

  γ(xc)=1-(1/ξc-3)/2m       (4.6) 

Putting b’(xc)/B0=(1-a)/a into (4.5) we get (3.8). From (4.5) we see that 3<1/ξc<2m+3. Using (2.11) and 

(2.12) we get 

  Q=Qr/(1-(1/ξc-3)/2m)       (4.7) 

Here Qr(xc,ξc)=(2g)1/2S’(xc)ξc
1/2(1-ξc), S’(x)=(H+h(x))3/2b’(x); xc and ξc must be found from the system 

(4.5)-(4.6). 

Example. Consider the geometry with width decreasing linearly with depth and parabolically along a 

channel at 0<x<1, b(x,z`)=(1-x)3n/a+1-z`, n>1/3. Let h(x)=Hx2. This is the geometry with a triangular 

section at the narrows, x=1, and a trapezoidal section elsewhere between x=0 and x=1. The channel width at 

the bottom is (1-x)3n/a. The solution of (4.5)-(4.6) in implicit form is (1-xc)3n=0.5a(1-ξc)(5-1/ξc)/(1/ξc-1), 

1/ξc=5+(2/n)(1-xc)xc/(1+xc
2). Introducing q=Q/(2gH3)1/2,  we have q=2ξc

3/2((1-xc)2/a+1-ξc)(1+xc
2)3/2. When 

a→0 then xc→1, ξc→0.2 and q→0.64(.4)1/2. When a→∞ then xc→0, ξc→0.2 and q→0.32(.2)1/2.  

Figure 6 shows graphs of xc(a), ξc(a) and q(a) for n=0.375, 0.5, 1 and 2. Increasing a and/or n leads to 

decreasing cross section area, and, as a result, to decreasing q. 

For n=0.375 and a certain range (between 1 and 1.3) of the parameter a, the surface F(x,ξ) has three 

critical points. As result the graphs of xc(a), ξc(a) and q(a) are three-valued in this interval of the parameter 
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Figure 6. Graphs of xc, ξc and q vs. the parameter a for a flow through a channel with geometry b(x,z)=(1-

x)3n/a+1-z` and h(x)=Hx2 for n=3/8, ½, 1 and 2. 
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5. Channels with trapezoidal cross-section b(x,z`)=(1-x)2/a+x2(1-z`) and flat bottom, 

h(x)=0 

This geometry gives an example where the channel width at different depths has a minimum at different 

positions along the channel. The cross-section area is rectangular at x=0, with width equal to 1/a, triangular  
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Figure 7. Graphs of xc, q, ξc and bt vs. a for the channel which section changes from rectangular at the crest 

to triangular at the narrows, b(x,z)=(1-x)2/a+x2(1-z). 

 

at x=1 and trapezoidal in between. At the bottom the position of the minimum width is always at x=1, 

xb(1)=1, and the minimum width equals 0, b(1,1)=0. The top width bt has a minimum at xb(ξ)=1/((1+a(1-ξ)) 

and equals b(xb(ξ),ξ)=(1-ξ)/(1+a(1-ξ)). We see that xb(ξ)→0 for large a and xb(ξ)→1 for a→0. For this 

geometry, the equations (2.9), (2.10) and (2.11) yield 

  ξc=1/(3+2xc),        (5.1) 

  a=(3+2xc)(1-xc)/xc(1+xc),      (5.2) 

  Q=(2gH3)1/2q, q=ξc
3/2(1-ξc)xc(1+xc).     (5.3) 
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Solving the quadratic equation (5.2) one gets an explicit expression for xc(a). Substituting it into (5.1) 

and (5.3) one gets explicit expressions for ξc(a) and q(a). 

When a increases from 0 to ∞, xc decreases from 1 to 0, ξc increases from 1/5 to 1/3, q decreases from 

0.1431 to 0 and the top width b(xc,ξc) decreases from 0.8  to 0 (figure 7). 

 

6. Plunging and run up  

(a) Plunging or reduced gravity model 

The result for withdrawal into an empty basin may also be applied to a two-fluid system when the lower 

denser (density ρ1) layer is completely covered by the motionless lighter fluid (this requires that the free 

surface is flat) (figure 1a). Then in figure 1(a) the plane z=0 is the free surface, z=ζ(x) is the depth of the 

interface, the space between the free surface and the interface is filled by fluid density ρ0, and g must be 

replaced by the reduced gravity gε0 in the formulae. Here ε0=(ρ1-ρ0)/ρ1. This solution describes a flow, 

which separates the regime of exchange flow (which occurs when the level of lighter fluid is slightly higher 

then the level of denser fluid) from the regime when the plunge point is upstream of the critical point (which 

occurs when the level of denser fluid is slightly higher then the level of lighter fluid). See details in Odulo & 

Swanson (1998, § 2.1, figure 1e), where these regimes were called regimes 4 and 3, respectively (also see 

Wood 1970, § 2.2(a)). 

(b) Run up on a rigid slope 

The approach presented above can be applied to the problem of run up on a rigid slope. Let h(x) 

monotonically increase from  0 at x=-∞ to ∞ at x=∞. This means that the sill is at x=-∞ and L=∞. Consider a 

flow from the infinitely deep basin. Let the channel width at the bottom be infinitely large far downstream. 

Then the free surface drop increases from 0 to H and the water velocity increases from 0 to (2gH)1/2 in the 

flow direction from x=∞ to x=-∞.  The critical point is downstream of the narrows and results obtained 
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above are valid in this case. In particular, solving the system (2.9)-(2.10) we find xc, ξc and then Q from 

(2.11).  

(c) Run up on a motionless layer of denser fluid 

Consider again the channel geometry as described in the Introduction. But now, the basins are filled with 

fluids of different densities (ρ and ρ1<ρ), and the level of the lighter fluid is higher then the level of the 

denser fluid. Denote the difference of the levels in the basins as ζ∞. If ζ∞ is large enough, the denser fluid is 

motionless (see details for rectangular section in Odulo & Swanson (1998), § 2.2). If in the area between the  

  ∫
−+ ∞ εζζζ

ζ

/)(

),(
cc

c

dzzxb cx =0       (6.3) 

the cross-section of flowing layer S(x,ζ)= ∫
−+ ∞ εζζζ

ζ

/)(

),( dzzxb  downstream of point xp (see figure 8). Instead (2.9) 

and (2.10) we get 

  S(xc,ζc)=2ζc(bs–bi+ bi/ε)      (6.2) 

sill and the narrows, there is an interface with a motionless layer of denser fluid under it (figure 8), then we 

have ζ+εη=ζ∞. Here η is the thickness of the flowing layer and ε=(ρ-ρ1)/ρ is the relative density difference. 

The bottom profile under the motionless denser fluid has no influence on the discharge. In (2.2)  

ζ1/2 S(x,ζ)=Q/(2g)1/2       (6.1) 



29 

 

h(x) 
surf 
inter 

(a)

u 

ηηηη 

ρρρρ     
1

ρρρρ 

x 
 p 

 

h(x)
surf
inter

u

ρρρρρρρρ1

xp

(b)

 

Figure 8. Sketch of run up on a motionless layer of denser fluid: (a) flow from a narrows to a sill; (b) 

flow from a sill to a narrows. 
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Here bs=b(xc,ζc) is the channel width at the free surface and bi=b(xc,ζc+(ζ∞-ζc)/ε) is the channel width at 

the interface at the critical point. If we define the hydraulic depth as Di= S(xc,ζc)/[bi+ε(bs-bi)], then (6.2) can 

be written as εDi=2ζc or u2(xc)=gεDi. 

For the channel with width b(x,z)=b’(x)B(z) the solution of (6.3) is xc=xb. Here xb is the position of the 

minimum of b’(x). For a trapezoidal section B(z)=1-az, in the Boussinesq approximation (ε<<1) the solution 

of (6.2) is 

ηc=4δ/[3+2aδ+(9-8aδ+4(aδ)2)1/2]     (6.4) 

Here ηc=δ-ζc/ε and δ=ζ∞/ε. The discharge is 

  Q=(8gεδ3)1/2(1-aηc)b’(xb).      (6.5) 

This solution is valid as long as there is a motionless layer under the flowing layer at x=xb. The value of 

δ=ζ∞/ε, separating the exchange regime from that described above, depends on bottom topography. For a 

rectangular cross section, see the solution in Odulo & Swanson (1998, p. 53). 

In the case of a flat bottom, this separating value is ζ∞/ε=H (Appendix) for any B(z). For a flat bottom 

and trapezoidal section, B(z)=1-az, the expressions (6.4) and (6.5) become aH=(4-6ξc)/(4ξc-5ξc
2) and 

q=Q/[2gεH3b’2(xb)]1/2 =2(1-ξc)1.5(1-aξc). Here ξc=ηc/H. Light lines for m=1 in figure 4 show ξc(a) and q(a). 

(d) Moving layer surrounded by motionless layers 

If the motionless denser fluid (density ρ>ρ1) is everywhere under the moving layer then equation (6.1) is 

valid everywhere and the solution (6.2)-(6.5) can be used without any modification. Obviously, the shape of 

the bottom or the presence of layers of moving denser fluids beneath the motionless layer will have no 

influence on the motion of the layer density ρ1. In general, the presence of a motionless layer in n-layer flow 

decouples it: the dynamics of the fluid above the motionless layer have no influence on the motion of the 

fluid under the motionless layer and vice versa (see e. g. Engqvist 1996).  
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If, instead of a free surface, there is an interface between a moving layer and motionless lighter fluid 

(density ρ0<ρ1), then we can use formulae (6.1)-(6.5) just replacing g with g(ρ1-ρ0)/ρ1 and ε with (ρ-ρ1)/(ρ-

ρ0). 

 

7. Discussion 

 (a) Solution for one layer flow gives particular solutions for a multi-layer flow 

For multi-layer flow, n≥2, the problem becomes more complicated. Similar to the one-layer problem, the 

discharges of all layers, Qj, j=1, … , n, can be found from the condition that the thickness of each layer, 

ηj(x), continuously decreases to 0 in the flow direction (Wood 1968, 1970, 1978; Wood & Lai 1972; Bryant 

& Wood 1976). For a given channel geometry and a given difference of the levels in the basin, ζ∞, the 

solution depends on 2(n-1) parameters, which are relative density differences εk,n, k=1, 2, …, n-1, (εm,j=(ρj-

ρm)/ρj, m<j), and the non-dimensional thickness of each layer (except the lowest) far upstream from a 

constriction, ξku=ηku/H. Depending on relations between these parameters, different regimes are possible. 

For example, if k upper layers move in the same direction and  

  ζ∞/H=ε1,k+1ξ1u +ε2,k+1ξ2u +…+εk,k+1ξku,    (7.1) 

then the layer of density ρk+1 is motionless, Qk+1=0; everywhere along a channel 

ζ+ε1,kη1+ε2,kη2+…+εk,k+1ηk=ζ∞;     (7.2) 

and the solution for the layers above and beneath the motionless layer can be found separately (Engqvist 

1996). If the second from the bottom layer is motionless, Qn-1=0, then the discharge of the lowest layer can 

be found as discussed in § 6a,b. If the second from the top layer is motionless, Q2=0, then the discharge of 

the upper layer can be found as discussed in § 6c.  

The result for one layer flow may also be applied to the cases when motionless layers above and bellow 

surround k layers moving in the same direction through a rectangular channel (for k=2 see figure 1 in Wood 

1968). In this case the flow is self-similar  
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  ηm(x)/ηmu=1-ζ(x)/ζ∞,  m=1, 2, …, k.    (7.3) 

The problem can be reduced to one equation for ζ(x), which has the same form as for one layer flow. But 

the flow is not self-similar if instead of the lower interface there is a non-flat bottom (Wood & Lay 1972) or 

the channel section is non-rectangular. 

 (b) Definition of the critical point 

In this paper we defined the critical point as a critical point of the function F(x,ζ), which is the left side 

of (2.2). The requirement that ζ continuously changes from 0 upstream to H+h(x) far downstream leads to 

the unique solution with discharge Q=(2g)1/2F(xc,ζc), see (2.4). 

Considering n-layer flow (Bryant & Wood 1976, pp. 586-587), we can take ζ∞=0 without loosing 

generality; a free surface case corresponds to ρ1=0 and ξ1u=ζ∞. The expression for the free surface slope can 

be found from the momentum and continuity equations  

  ζx= D0(x; Qj,ξku,εk,n)/D(x; Qj,ξku,εk,n).    (7.4) 

The requirement that both the numerator and the denominator of this expression are zero at the same 

points xi (i=1, 2 … n) (Bryant & Wood 1976, pp. 586-587 called them the “critical points”, xic), gives 2n 

relations 

D0(xic; Qj,ξku,εk,n)=0,       (7.5) 

D(xic; Qj,ξku,εk,n)=0.        (7.6) 

See example for n=3 in Smeed (2000). Excluding xic one gets n relations Gj(Qj,ξku,εk,n)=0 to find Qj for 

given ξku and εk,n. 

For a layer density ρ1 flowing between motionless layers density ρ0 and ρ (ρ0<ρ1<ρ) instead (1.2) and 

(6.2) we have 

  u2=2g(ρ1-ρ0)ζ/ρ1       (7.7) 

and 

  S(xc,ζc)=2ζc(bs+(ρ1-ρ0)bi/(ρ-ρ1))     (7.8) 
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Here bs=b(xc,ζc) and bi=b(xc,ζc+(ζ∞-ζc)(ρ-ρ0)/(ρ-ρ1)) are the channel width at upper and lower interfaces at 

the critical point, respectively. Obviously, we can define the hydraulic depth, Dsi, and the local Froude 

number, Fr(x), in a such way that Fr(xc)=1: Dsi=S(x,ζ)/[bs+(ρ1-ρ0)bi/(ρ-ρ1)] and Fr2(x)=u2/[Dsig(ρ1-ρ0)/ρ1]. 

Calling the velocity at the critical point the critical velocity, uc
2= Dsig(ρ1-ρ0)/ρ1, one can call the flow 

upstream of the critical point sub-critical, and downstream of the critical point super-critical. 

(c) Concluding remarks 

To determine the discharge of the withdrawing fluid from a large basin one has to find the value of the 

function F(x,ξ) at the saddle point. It can be found numerically remembering that xc is between a bottom 

crest and a narrows and ξc <1/3. Analytically F(xc,ξc) can be found for some particular geometries.  

The analytical solutions presented in this paper demonstrate the influence of the channel geometry on 

the discharge. The geometries, considered above, contain the parameters a, k, m and n. These parameters 

characterize the behavior of the width and depth along the cannel. When these parameters change in a such 

way that the channel cross-section increases, then the discharge always increases, but the water surface drop 

(and therefore the velocity) at the critical point can increase or decrease (see figures 4, 6,7). Clearly, the 

general formula which practicing engineers could use for discharge calculations does not exist. However, 

for some classes of geometries, the approximation formulae can be found. For example, for channels, which 

geometry can be approximated in the form (2.13a) with cross-section (3.7) and along channel geometry 

(3.12), the approximation formula (3.13) can be used. 

 

Nomenclature 

a, k, m and n arbitrary numbers; 

b(x,z`)  channel width; 

D(x,ζ)  hydraulic depth of water area; 

f(ξ)  the left side of (3.5)  (=ξ1/2s’(ξ)); 
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ε  relative density difference (=(ρ-ρ1)/ρ); 

g  gravitational constant; 

H  the water surface level in the basin measured from the bottom crest datum; 

h(x) depth of the lowest point of the channel section measured from the bottom crest level; 

L   distance between the bottom crest and the narrows; 

s(x,ξ)  = S(x,ζ)/(H+h(x)); 

S(x,ζ)  fluid cross-section area (see (2.1)); 

S''(x,z`) =(H+h(x))3/2b(x,z`); 

S’(x)  =(H+h(x))3/2b’(x); 

q  non-dimensional discharge; 

Q  discharge;  

u(x)  mean flow velocity; 

x  axis pointing along the channel from the bottom crest to the narrows;  

z  axis pointing vertically downwards; 

z`  =z/(H+h(x)); 

ξ  relative water surface drop (=ζ/(H+h(x)));  

ζ(x)  water surface drop. 

Subscripts 

c  at critical point; 

x  partial derivative over x; 

ξ  partial derivative over ξ. 
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Appendix. Exchange flow through a non-rectangular contraction 

In this Appendix we show that the same method can be used to find the exchange flow through a non-

rectangular section contraction. 

Consider an exchange flow through a channel with variable width b(x)B(z/H) and flat bottom in the 

Boussinesq approximation (b(x) has a unique minimum at x=0 and infinitely increases at x→±∞). From the 

Bernoulli and continuity equations (Baines 1995, § 3.10) we get the equation for the non-dimensional 

interface depth (the thickness of the upper layer η(x)=Hξ(x)) 

  εδ+Q2/(2gH3b2s2)=εξ+ Q1
2/(2gH3b2s1

2).    (A.1) 

Here δ=ζ∞/εH is a non-dimensional difference of the levels in the basins, H is the depth in the lighter basin 

far from the contraction, ε=(ρ-ρ1)/ρ, ρ1 and ρ are the densities of the upper and lower layers, Q1 and Q are 

the discharges of the upper and lower layers and 

  s1(ξ)= ∫
ξ

0

')'( dzzB , s(ξ)= ∫
1

')'(
ξ

dzzB     (A.2) 

are the fluid sections of the upper and lower layers. Because ξ(x) changes from 0 upstream to 1 downstream, 

for 1>δ>0 we have that at some point ξ=δ. Then from (A.1) we have 

  Q1=Qs1(δ)/s(δ).       (A.3) 

If the width decreases with the depth, then Q1/Q>δ/(1-δ). From (A.2) and (A.3) it follows that Q1=0 when 

δ=0 and Q=0 when δ=1. In the first case (A.1) becomes 

  ξ1/2s(ξ)=q/b`(x).       (A.4) 

Here q=Q/Q`, Q`=(2εgH3)1/2b(0), b`(x)=b(x)/b(0). In the second case (A.1) becomes 

  (1-ξ)1/2s1=q1/b`(x).       (A.5) 

Here q1=Q1/Q`. For rectangular channel s=1-ξ, s1=ξ and we have q=2/271/2, ξc=1/3 for δ=0 and q1=2/271/2, 

ξc=2/3 for δ=1. 
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Consider the parabolic section (3.7). We already have the solution for δ=0. For δ=1, searching for the 

maximum of the function (1-ξ)1/2s1, we get ξc(a,m) in an explicit form 

  1/a=1+((2m+3)(1-ξc)m+1-1)/((m+1)(3ξc-2))    (A.6) 

and non-dimensional discharge 

q1=2(1-ξc)3/2(1-a+a(1-ξc)m)      (A.7) 

(see light lines in figure 4). For a=1 we have ξc=1-1/(2m+3)1/(m+1) and q1=2/((2m+3)1/(m+1))3/2+m in agreement 

with (24) in Dalziel (1992). For m=1 we have ξc=4/(3+2a+(5+4(1-a)2)1/2) and q1=(1-ξc)1/2ξc(1-aξc/2). 

From (A.3) we have that Q1=Q when δ satisfies the equation 

  s1(δ=)=s(δ=).        (A.8) 

For a rectangular cross section δ==1/2. If the channel width decreases with depth then δ=<1/2. The faster the 

width decreases with depth the smaller δ= becomes. For a parabolic cross-section (3.7) the solution of (A.8) 

is 1/a=1-(2(1-δ=)m+1-1)/((m+1)(1-2δ=)). For a=1 we have δ==1-(1/2)1/(m+1). For m=1 we have δ==(2-

a)/(2+(2+2(1-a)2)1/2). 

Substituting (A.3) into (A.1) we get 

  s(ξ)(ξ-δ)1/2/[(s2(δ)/s1
2(δ)-s2(ξ)/s1

2(ξ))]1/2=q1/b`(x).   (A.9) 

If the left side of this equation, which we denote f(ξ,δ), has a unique maximum, then ξc(δ) can be found 

from the equation fξ(ξ,δ)=0. Then we get the discharge q1(δ)=f(ξc,δ). Odulo at al. (1997a) obtained the 

analytical solution for the channel with a rectangular cross section. For arbitrary B(z) the maximum of f(ξ,δ) 

can be found simply plotting f(ξ,δ) for given δ and 0<ξ<1. 

In particular, for δ=δ= (A.9) becomes 

  s(ξ)s1(ξ)[(ξ-δ=)/((s1(ξ)-s(ξ))s(0))]1/2=q(δ=)/b`(x).   (A.10) 

For the triangular section, B(z)=1-z, we get ξc≈0.3175 and q1=q≈.0745. These values are less than the 

corresponding values for the rectangular section ξc=.5 and q1=q≈.1768. 

For the channel cross-section b(x,z/H)=.5b(x)/(z/H)1/2 we get δ==1/4 and (A.10) becomes 
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  (1+2ξ1/2)1/2(ξ1/2-ξ)=2q/b(x).      (A.11) 

From (A.4), (A.5) and (A.11) we get ξc=1/4, q=1/4 for δ=0; ξc≈0.31165, q=q1≈0.1793 for δ=1/4; and ξc=.5, 

q1=.5 for δ=1. Comparing these numbers with corresponding values for rectangular and triangular profiles 

one can see the strong influence of the shape of the channel section on the discharge. 
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