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ABSTRACT 
 

This paper presents a complete analytical solution of steady gravity flow between two reservoirs 
connected by a channel of slowly varying breadth and containing fluids of different densities and levels. The 
hydrostatic approximation is used and dissipation is neglected. 

It is shown that seven different regimes are possible depending on the value of the parameter δ=γ/ε, which 
is the ratio of  relative  lighter and denser reservoir level difference, γ, to positive relative density difference, ε. 
The exact solution of the problem is obtained for all these regimes. If the level of the heavier fluid reservoir is 
higher than the level of lighter fluid reservoir, δ ≤ 0, then the denser fluid plunges under the lighter motionless 
fluid. If δ ≥1 the lighter fluid runs up on a wedge of  the motionless denser fluid. 

 If  0<δ<1 two-directional exchange flow occurs. The exact analytical expressions for layer discharges for 
the entire range of the parameters ε and δ are found and discussed. Wood’s (1970) experimental data with non 
small ε are in good agreement with the theory. When ε→0 an exchange regime exists as long as γ→0 to keep 
their ratio between 0 and 1, 1>γ/ε>0. At this limit the existence of an exchange flow  and the solution depend 
only on the ratio γ/ε, not the values of γ and ε individually, and the Boussinesq approximation can be used. 

Some examples of application of the theory to prediction of mass and volume transport through a 
contraction for steady and quasi-steady flows (due to slowly vary in the basins level) are given.  
1.   INTRODUCTION 

The gravitational flow of two fluids of different densities through a contraction is important in numerous 
engineering and geophysical problems (e.g. Schijf and Schönfeld (1953), Stommel and Farmer (1953), Bryden 
and Kinder (1991), Baines (1995), pp. 146-7, Hogg and Huang (1995), Chapter 4). In fact, observations of  
two-directional flow go back at least to the sixth century, when "the fishermen of the towns on the Bosphorus 
say that the whole stream does not flow in the direction of Byzantium, but while the upper current which we 
can see plainly does flow in this direction, the deep water of the abyss, as it is called, moves in a direction 
exactly opposite to that of the upper current and so flow continuously against the current which is seen" (Gill, 
1977, p.96). In the seventeenth century Marsigli experimentally demonstrated that the density difference 
between the Black Sea and the Mediterranean causes a two-directional flow in the Strait. "He had attempted to 
measure a difference in sea level between the Black Sea and the Mediterranean using a mercury barometer" 
(Gill, 1977, p. 97). But if the density difference between the reservoirs is very small, the exchange flow exists 
only for a very small difference in sea level. To study the influence of the difference in sea level on  two-
directional flow Wood (1970) conducted an experiment with exchange flow between two reservoirs connected 
by a contraction, containing fluids of different densities (ρ1 and ρ2>ρ1) and covered a third layer of lightest (ρ0<ρ

1) stagnant fluid. In this case neither ε=(ρ2-ρ1)/(ρ2-ρ0) was very small nor was the relative difference in reservoir 
levels, γ=(H1-H2)/H. The measurements of the thickness of the upper and lower layers (η1 and η2) were easily 
recorded photographically. 

 Wood (1970) showed  that the condition that the thicknesses of the moving layers decrease smoothly from 
their values in the upstream reservoirs (H1 and H2) to the value of zero in the infinitely wide downstream 
reservoirs, gives two additional equations which provide the complete system of algebraic equations 
determining a unique solution. He presented the results of numerical calculations as graphs of η1 and η2 at the 
minimum width b0  and q1

2 and q2
2
 as functions of the depths ratio H2/H1 for a range of density difference ratios 

ε. Here q=Q/(cb0H) is a discharge coefficient, c= 2εgH , b0 is the channel width in the narrowest cross section, g 
is the gravitational acceleration; see also notation in Appendix E. He also obtained the solution for the case of a 
denser layer plunging under a stationary lighter layer. 

Exchange flow in the case of the absence of the third layer (ρ0=0) was considered by Armi and Farmer 
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(1986), Lawrence (1990), Dalziel (1991) (and in this paper); see also Baines (1995, §3.11). Changing notation 
one can make both problems (ρ0=0 and the problem solved by Wood (1970)) identical. Armi and Farmer (1986) 
solved the problem numerically in the Boussinesq approximation using "net discharge", U=q1-q2, as the 
independent parameter. They also discussed the case of a denser layer plunging under a stationary lighter layer 
and the case of a lighter layer running up on a stationary denser layer. In the Boussinesq approximation 
Lawrence (1990) found algebraic expressions for the thicknesses of the layers in the narrowest section and 
algebraic expressions for values of channel width where the layer velocities are equal  and where their sum is 
equal to c/ 2 . He used the discharge ratio qr=q1/q2 as the independent parameter. For the case of pure 
contraction Dalziel (1991) presented numerical results identical to those obtained by Armi and Farmer (1986). 

Most previous studies concentrated on the positions and flow conditions at so-called "control points". The 
main goal of our study is the determination of the discharges Q1 and Q2  in terms of external conditions 
(channel geometry, reservoir levels and fluid densities). 

In this paper we obtain the exact analytical solution of the steady flow through a contraction which 
connects two large basins with fluids of given densities and levels. Our study is based on the specific energy 
equation, introduced by Bakhmeteff (1932, §15), see also Henderson (1966, p. 31). It will be shown that the 
key parameter of this problem is δ=(H1-H2)/εH, H=max(H1,H2). If δ < 0 then the denser fluid plunges under the 
stagnant lighter layer (regimes 1-3), if δ > 1 then the lighter fluid runs up on a wedge of stagnant heavier fluid 
(regimes 5-7). The results for these regimes are presented in section 2 and the solutions are given in 
Appendixes A and B. Regimes 1, 2, 3, 5, 6 and 7 differ in the positions of the tip of the wedge of the stagnant 
fluid (the plunge point, Wood, 1970, p. 676) and in the dependence of Q1 and Q2 on δ. For regimes 1 and 7 the 
discharges Q1 and Q2 are constants independent of ε and δ. The discharge Q1∼ (δ-1)1/2 for regime 6 and Q2∼ (-δ
)1/2 for regime 2, Q1∼δ

3/2 for regime 5 and Q2∼ (1-δ)3/2 for regime 3. 
If 0 < δ < 1 then both layers are in motion (regime 4). The complete analytical solution for the entire range 

of the parameter ε (0 < ε < 1) is given in section 3. In particular the exact expressions for the contraction 
discharge coefficients q1 and q2 as functions of the parameters ε and δ are found. For exchange flow graphs q1(ε
,δ) and q2(ε,δ) are close to q1(0,δ) and q2(0,δ), respectively. In the Boussinesq approximation (ε=0; subsection 
3.b.) the solution takes the simpler form. In particular, the discharge of lighter fluid Q1=A(δ)δcb0H and the 
discharge of denser fluid Q2=A(δ)(1-δ)cb0H (here A(δ) varies between 2/ 27  (for δ=0 and δ=1) and 1/ 8 (for 
δ=0.5)). 

 The application of the steady solution in the case when δ and/or ε slowly change with time is discussed in 
section 4. 

Let us now show the physical meaning of the parameter δ. If the reservoirs have the same densities, but 
different depths and are separated by a gate, the difference of their potential energies per unit mass is g(H1-
H2)/2. One can find the description of the flow initiating from the removal of the gate  for a channel of constant 
width in Henderson (1966, pp. 309-310). If the reservoirs have the same depths, but different densities and are 
separated by a gate, the difference of their potential energies per unit mass is εgH/2. One can think of δ as the 
ratio of these  differences of the potential energies. 

Now we shall give the example of the initial condition which results in the steady flow considered in this 
paper. Let the reservoirs have  different densities (ρ1 and ρ2>ρ1), different depths (H1 and H2) and be separated 
by a gate in the narrowest cross-section. Then the pressure on the left side of the gate is p1= gρ1z (here z is the 
vertical downward coordinate, 0<z<H1) and on the right side is  p2=gρ2(z+H2-H1) (here H1-H2<z<H1). If  H2>H1 
(this means δ < 0) then  p2>p1 at all z and after the removal of the gate the flow initially will be from right to left 
at all z. If ρ1H1>ρ2H2 (this means δ > 1)  then  p1>p2 for all z and after the removal of the gate the flow initially 
will be from left to right for all z. If H1>H2>ρ1H1/ρ2 (this means 0< δ < 1) then p1>p2 for 0<z<δH1 and p2>p1 for δ
H1<z<H1, therefore after the removal of the gate the flow initially will be from left to right for 0<z<δH1 and 
from right to left for δH1<z<H1. 

It is clear that the unsteady flows initiated by the removal of the gate in the cases where H1≠H2  and where  
the densities on the either side of the gates are equal in one case but different in the other, are similar only if δ
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 >>1. The flows are very different if δ  is order of or less than 1. In this paper we study the steady flow of 
two fluids with different densities. 

The conventions adopted throughout this paper are as follows: 
the lighter fluid moves from left to right and the denser fluid moves from right to left; 
all values and parameters are positive except δ and γ which are negative when H1< H2; 

x is the horizontal coordinate along a channel; 
the channel width b(x) is infinite  at x → ±∞ and has a unique minimum b0 at x=0; 
the channel has a flat bottom, H=max(H1,H2).  
 
   2. PLUNGING AND RUN UP 

We consider the problem  of  two-layer flow through a rectangular profile channel of slowly varying width 
connecting two reservoirs of infinite width (plan view is sketched in Fig. 1(a); Fig. 1(b)-(h) present calculated 
side views for particular values of the parameters ε and δ and illustrate all seven regimes). 
a. A denser fluid plunging under a stationary layer. If the level of the heavier fluid reservoir is higher than the 
level of lighter fluid reservoir (H1< H2), then the lighter fluid is at rest (velocity u1=0). The position of the 
plunge point (defined as the position of the tip of the wedge of motionless fluid) is denoted as x*.  

The solution can be found from the Bernoulli and continuity equations and the requirement that the 
thickness of the denser layer η2 continuously decrease from H2 to 0 (see Appendix A). The first three rows of 
Table 1 present  the contraction discharge coefficients q1=Q1/cHb0 and q2=Q2/cHb0 and the non-dimensional 
thicknesses of the lighter and denser layers ξ1=η1/H and ξ2=η2/H at the position of minimum width at x=0 
(which we denote as  ξ10 and  ξ20, correspondingly) as functions of ε and δ for  regimes 1-3.  Regimes 1-3 (see 
Fig. 1(b)-(d)) correspond the position of the plunge point x* being downstream, at and upstream of the 
narrowest section (Wood, 1970, p.676).  

For given ε and δ the non-dimensional thickness of the denser layer ξ2 satisfies the specific energy 
equation (see (A.7)) 
 ξ2

2
-ξ2

3
= εq2

2/b
2 

at x ≥x*,
 

(1) 
and  
 (1-δ(1-ε))ξ2

2
-ξ2

3
= q2

2/b
2
 at x ≤ x*. (2) 

This equation determines the free surface at x ≥ x* and the interface at x ≤ x* as functions of the non-
dimensional channel width, b(x)=b(x)/b0, in implicit form.  

The non-dimensional free surface elevation ξ=ζ/εH can be expressed in terms of ξ2 as follows (see A.5) 
 εξ=1-ξ2  at x ≥ x*. (3) 
At x < x*  the free surface is a horizontal plane.  

The non-dimensional velocity of the denser fluid v2= u2/c is (see (A.1)) 
 v2= ξ  at x > x*, (4) 
and (see (A.3))    
 v2= ξ δ1 −  at x ≤ x*, (5) 
where 
  ξ1=1 + εδ - ξ2 at x ≤ x* . (6) 
One can see that v2(x) monotonically increases from  v2(∞)=0   to  v2(-∞)= 1 1− −( )ε δ. 
 

Table 1 
 

 q1 q2 ξ20 ξ10 
regime 1 

1/ε≥-δ ≥1/3ε 0 2/ 27ε  2/3 - 

regime 2 
1/3ε≥-δ ≥1/(2+ε) 0 (1+εδ) −δ 1+εδ 0 
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regime 3 
1/(2+ε)≥-δ ≥0 0 2((1-δ(1-ε))/3)3/2 2(1-δ(1-ε))/3 (1+δ(2+ε))/3 

regime 4 

0 ≤ δ ≤1 
δA/ 1−εδ (1-δ)A  κ0ξ10 2(2+α)/(3(κ0+2+α)) 

regime 5 
1 ≤ δ≤  3/(2+ε) 

2(δ/3)3/2 0 1-δ(2+ε)/3 2δ/3 
regime 6 

3/(2+ε)≤ δ ≤  (1+2ε)/3ε (1-εδ) δ − 1/(1-ε)3/2 0 0 (1-εδ)/(1-ε) 
regime 7 

(1+2ε)/3ε ≤  δ ≤ 1/ε 
2/ 27ε   0 - 2/3 

 
If a motionless lighter fluid completely covers a heavier fluid (δ = 0) then according to Archimedes 

Principle the flow of the lower layer is the same as in absence of the upper  layer but with reduced gravity. If δ 
= 0 then ξ2(x) is described by equation (2) for all x. The shape of the interface is the same as the free surface for 
one layer flow (εδ=-1, in dimensional form H1=0). However the discharge Q2 in the case with δ = 0 is ε  times 
the discharge Q2 of the one layer case with εδ=-1. 
b. A lighter fluid running up over a stationary denser wedge. If the level of the lighter fluid reservoir is so high 
that δ>1 ( H1>H2+εH1 ) then the denser fluid is at rest, u2=0, and the lighter fluid runs up over the wedge of the 
denser fluid.  

The solution can be found from the Bernoulli and continuity equations and the requirement that the 
thickness of the lighter layer η1 continuously decreases from H1 to 0 (see Appendix B). The last three rows of 
Table 1 present q1, q2, ξ10 and  ξ20 as functions of ε and δ for regime 5 (Fig. 1(f)), for regime 6 (Fig. 1(g)) and 
for regime 7 (Fig. 1(h)), respectively. 

For given ε and δ the non-dimensional thickness of the lighter layer ξ1 satisfies the specific energy 
equation (see (B.6))  
 (1-ξ1) ξ1

2
=εq/b

2
 for x* ≥ x (7) 

and 
 (δ-ξ1) ξ1

2
=q/b

2
 for x ≥ x*,. (8) 

The non-dimensional free surface  ξ=ζ/εH is determined  by the equation (see (B.3) 
 εξ=1-ξ1 for x* ≥ x,  
and (see (B.5)   (9) 
 ξ=δ-ξ1 for x ≥ x*.    
 The interface is determined by the equation (use the last equation and (B.4)) 
 ξ2=1- εδ -(1-ε)ξ1 for x ≥x*. (10) 
The non-dimensional velocity of the lighter fluid v1=u1/c is (see (B.1)) 
 v1= ξ . 
One can see that v1 monotonically increases from 0 at x → ∞  to v1(-∞)= δ. 
 
 
3. EXCHANGE FLOW 

The solution for regime 4 will be obtained in this section from the Bernoulli and continuity equations and 
the requirement that the thickness of the layers η1 and η2 continuously decrease from their maximum values to 
0. The notation of row 4 in Table 1 will be explained. 
a.  Exact solution. If  0 < δ < 1 (0<H1-H2< εH1) then both layers are in motion. The Bernoulli and continuity 
equations are 
 u1

2=2gζ,  (11) 
 u1η1b=Q1,  (12) 
 u2

2=2g(ζ-H1+H2+εη1),  (13) 
 u2η2b=Q2.  (14) 
We also have from the definition of  the free surface displacement ζ (see Fig. 1e) that 
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 η1+η2+ζ=H1.  (15) 
To obtain (11) and (13) we have used the boundary conditions 
 u1 → 0, ζ → 0 at x→-∞, 
 u2→0, ζ→H1-H2 at x→∞. 

We have already found the solution for δ = 0 and δ = 1 (see regimes 3 and 5 in Table 1). We can describe 
some properties of the exchange flow even before solving the problem. When δ increases from 0 to 1 then: 

q1 increases from 0 to 2/ 27, q2 decreases from 2/ 27 to 0 (therefore q1/q2  increases from 0 to ∞,  q1-q2  
increases from -2/ 27 to 2/ 27 ); 

η1(0)  increases from H1/3 to 2H1/3, η2(0) decreases from 2H2/3 to H2/3; 
u1(∞) increases from 0 to c, u2(-∞) decreases from  c to 0.  
Using non-dimensional variables (defined in section 2, see also Appendix E) one can rewrite the system 

(11)-(15) in the following form 
 v1

2=ξ,  (16) 
 v1ξ1b=q1,  (17) 
 v2

2=ξ-δ+ξ1,  (18) 
 v2ξ2b=q2,  (19) 
 ξ1+ξ2+εξ =1.  (20) 
For a given channel geometry b(x), relative density difference ε and relative level difference γ (δ=γ/ε) the 

system of five equations (16)-(20) contains five unknown functions ξ(x), ξ1(x), ξ2(x), v1(x) and v2(x) and two 
unknown contraction discharge coefficients q1 and q2. Wood (1970) showed that q1 and q2 can be found using 
the condition that the thickness η1 and η2 decrease smoothly from the values H1 and H2 to 0. It follows from his 
solution that  q1 and q2 depend only on ε and δ and are the same for any contraction. 

The parameter ε appears only in equation (20). Thus the Boussinesq approximation (ε=0, but δ=γ/ε, ξ=ζ/εH 
and c2=2gεH remain finite) and the rigid lid approximation (ξ1+ξ2=1) are identical for exchange flow. Note that 
if instead of a free surface we have a rigid lid at z=H, then one can determine the function ζ as ζ=((p(-∞,H)-
p(x,H))/(gρ1) and δ as δ=((p(-∞, H)-p(∞,H))/(εgHρ1) and use the solution in  the Boussinesq approximation 
obtained below (here p(x,H) is the pressure on the lid). 

From (20) and the boundary conditions we have 
 0≤ξ1≤ξ1(-∞ )=1 and 0≤ξ2≤ξ2(∞ )=1-εδ. 

It follows from (16) and (18) that v1= v2  at the point where ξ1=δ, 
 0≤v1≤ δ=v1(∞ ) and 0≤v2≤ 1 − δ=v2(-∞ ). 
Eliminating v1,v2 and ξ from the system (16)-(20) we get 
 ξ1+ξ2+εq1

2/ b2ξ1
2=1  (21) 

 δξ2+q2
2/ b2ξ2

2=(1-δ)ξ1+q1
2(1-εδ)/ b2ξ1

2 (22) 
Equation (22) can be called the specific energy equation for an exchange flow. The equations (21) and (22) 
correspond to equations (15) and (16) in Wood (1970). 
 
Let us rewrite the equation (22) in the form 

 q2
2-q1

2(1-εδ)κ2=ξ1ξ2
2(1-δ-δκ)b2,  (23) 

where κ(x) is the ratio of layer thicknesses 
 κ(x)=ξ2(x)/ξ1(x).  (24) 

Because κ(x) changes continuously from 0 to ∞, there must be such a point xv where  
 κ(xv) ≡ κv = (1-δ)/δ.  (25) 

So, by definition, xv is the point where ξ2(x)/ξ1(x)=(1-δ)/δ. Putting x=xv in (23) we get the relationship between 
q1 and q2, which corresponds to equation (26) in Wood (1970), 

 1− εδq1/q2=δ/(1-δ).  (26) 
This relationship allows us to introduce A(ε,δ) such that 
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 q1 1− εδ=Aδ,  q2=A(1-δ).  (27) 
This leads to 

 1− εδq1+q2=A,  (28) 
 1− εδq1-q2=A(2δ-1)  (29) 
 q1/q2=δ/((1-δ) 1− εδ )  (30) 

Substituting (27) into (16)-(20) after some algebra yields 
 1− εδv1=δξ2/s,  (31) 
 v2=(1-δ)ξ1/s,  (32) 
 ξ1ξ2b=As,  (33) 
 (1-δ)ξ1

2+ξ1ξ2+ξ2
2δ/(1-εδ)=(1-δ)ξ1+δξ2, (34) 

where 
 s2=(1-δ)ξ1+δξ2.  (35) 

From (31) and (32) we get 
1− εδv1+v2=s,  1− εδv1-v2=(δ-ξ1-εδξ)/s, 1− εδv1=κv2/κv (36) 
In particular 1− εδv1(xv)=v2(xv) (see equation (22) in Wood, 1970). If δ=1/2 one can see from (25) that 

η1(xv)=η2(xv) and from (26) that H2Q1
2=H1Q2

2. From (26) we get that Q1=Q2 when ε=(1-2δ)/(δ(1-δ)2) or 
approximately δ≈0.5-0.07ε for 0≤ε≤1. 

If we add to the system (31)-(32), (34)-(35) one more condition, for example, v1=v2 or ξ1 =ξ2 (each of 
which occurs at some position), we get five equations. These equations allow us to find all five functions v1(ε,δ), 
v2(ε,δ), ξ1(ε,δ), ξ2(ε,δ) and s(ε,δ)  (see Appendix C) which are independent of b(x) and do not require knowledge 
of A(ε,δ).  

The analytical solution of the system (31)-(35) in parametric form, which expresses ξ1, ξ2, v1, v2 and s in 
terms of b(x), is presented in Appendix D. The analytical expression for A(ε,δ)  will be obtained below from the 
condition that the thicknesses η1 and η2 are smooth functions. At this time we would like to point out  that the 
expressions (31) and (32) for the velocities v1  and  v2 in terms of ξ1 and ξ2 and the quadratic equation (34), from 
which one can express ξ1 in terms of ξ2, contain neither A(ε,δ) nor the channel width b(x). We see that the 
functions v1(ξ2), v2(ξ2) and ξ1(ξ2) do not depend on channel geometry. Solving the quadratic equation (34) and 
using (35) one gets from (33) the algebraic expression for b(ξ2), which gives the interface as function of the 
channel width in implicit form (see Fig. 1(e)). 

In the system (31)-(35) the parameter ε occurs only in the combination 1-εδ. Therefore the Boussinesq 
approximation can be used for entire range of  ε (0<ε<1) if γ<<1. 

To find A(ε,δ) we use (34) to rewrite equation (33) as 
A2δ(κ + κv)(1 + κ + εδκ2/((1-εδ)(κ + κv)))

3/κ2 = b2. 
The right side of this equation has a minimum at x=0. Therefore the left side must also have a minimum at x=0. 
This leads to 

2κ0
2-κ0(1-κv)- 2κv + 2εκ0

2(κ0 +2κv)/((1-ε+κv)(κ0+κv))= 0.  (37) 
Here κ0=κ(0) is the ratio of layer thicknesses at the narrowest section which decreases from 2 to (1-ε) /2 when δ 
increases from 0 to 1.  

 Introducing the parameter α=κ0/κv one can find from (33), (34) and (37) the following expression  for A(ε,
δ) in parametric form 

 A2 = 8(κ0+α)κ0/(27(1+α)(1+κ0/(2+α))3), (38) 
 δ = α/(κ0+α),  (39) 
 κ0=(1-α2+.5εα(1-α)/(1+α) +  (40) 
 + ( ( / ) ) /( )1 1 2 6 1

2 2 2 3 22

+ − + − − +α ε α ε α ε α α )/(1+2α), 
 which completes the solution. 

One can see from (39) that α varies over the interval (0,∞) when δ changes from 0 to 1. The fourth row of 
Table 1 presents the contraction discharge coefficients q1 and q2 and non-dimensional thicknesses ξ10 and ξ20 
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as functions of ε and δ in parametric form (α is the parameter and κ0 is given by (40)) for regime 4 (Fig. 1(e)). 
The velocities v1(0) and v2(0) can be found from relations 

 v1(0) =q1/ξ10   and     v2(0)=q2 /ξ20. 
Figures 2-5 illustrate the solutions presented in the Table 1. Fig. 2 shows the graphs q1

2
 and q2

2
 as functions 

of δ for a wide range of the parameter ε (cf. Wood, 1970, Fig. 6). If the lighter fluid is air and the denser fluid is 
water then ε≈0.9987. For ε=0.9987 regimes 5, 6 and 7 (water is motionless) exist when H2<0.0013H1. For ε→1 
regimes 1, 2 and 3 merge into regime 1 at -1<δ<0 and regimes 5, 6 and 7 merge to one point at δ=1. Remember 
that δ changes in the interval [-1/ε,1/ε]. The graphs q1

2(δ) and q2
2(δ) are presented in Fig. 2 in their entirety for 

all seven regimes for ε=1 (-1<δ<1), ε=0.75 (-4/3<δ<4/3) and ε =0.5 (-2<δ<2). 
Fig. 3 shows the graphs q1(δ) and q2(δ) (cf. Wood, 1970, Fig. 6) for exchange flow only and the values of ε 

as in Wood (1970). If ε=0 the graphs q1(δ) and q2(δ) are symmetrical on either side of the line δ=0.5. When ε 
increases then q1(δ) slightly increases and q2(δ) slightly decreases; both the value of δ for which q1=q2=q= and 
the value of q= slightly decrease. 

Fig. 4 shows graphs ξ10, ξ20 and ζ(0)/H as functions of δ for regimes 3, 4 and 5 and the values of ε as in 
Wood (1970). If ε=0 the graphs ξ10(δ) and ξ20 are symmetrical on either side of the line δ=0.5 and ζ(0)/H=0. 
Note that the graphs η20(ε,δ)/H2 will be closer to each  other for different ε than the graphs η20(ε,δ)/H1. The 
graphs ξ10 and  ξ20 as functions of δ and Wood's (1970) experimental data are shown on Fig. 5.a and 5.b, 
correspondingly. The agreement between the experimental points and  theoretical curves is very good. Figures 
4 and 5 correspond to Figures 9 and 10 in Wood (1970) which present ξ10 and  ξ20 as functions of  H2/H1=1-εδ. 

b. Boussinesq approximation. In most natural flows both ε and  γ are very small. If  ε>γ>0, an exchange 
flow occurs and the Boussinesq approximation can be used. In other words one can put γ=0 (H1=H2) and ε=0 (ρ
1=ρ2) everywhere except the expressions c2=2εgH, ξ=ζ/(εH) and δ=γ/ε. For exchange flow 0<δ<1, therefore the 
condition γ<<1 follows from the condition ε <<1.  

In the Boussinesq approximation it is convenient to use the ratio of layer thicknesses at the narrowest 
section κ0 (0.5<κ0<2) as the parameter. The complete solution of the problem is (putting ε=0 in (40) and using 
(38)-(39) and the fourth row of Table 1) 

 δ =(1-κ0/2)/(1-κ0+κ0
2),  (41) 

 A2=2κ0(1+κ0
3)/(1+κ0)

5,  (42) 
 q1

2=2κ0(1-κ0/ 2)2/(1+κ0
3)(1+κ0)

3,  (43) 
 q2

2=2κ0
3(κ0-1/ 2)2/(1+κ0

3)(1+κ0)
3,  (44) 

 ξ10=1/(1+κ0),  ξ20=κ0/(1+κ0).  (45) 
Note that one can get an explicit expression for κ0(δ) from quadratic equation (41) and obtain A(δ) in the 

explicit form 
 6A2(δ) = (1+2√1-3µ2 )/(1+√1-3µ2 )2, (46) 
where µ=δ-1/2. Because κ0=1/ξ10-1 one can rewrite the solution (41)-(45) using ξ10 as the parameter. 

Using x as a parameter (-∞ < x < ∞ ) we have (putting ε=0 in Appendix D)  
 2ξ1=1- tanh x,  (47) 
 2ξ2=1+ tanh x,  (48) 
 2v1=δ (1+ tanh x)/ (1+(2δ-1) tanh x) 1/2, (49) 
 2v2=(1-δ) (1- tanh x)/ (1+(2δ-1) tanh x) 1/2, (50) 
 2 s=(1+(2δ-1) tanh x) 1/2,  (51) 
 b(x)= 8 A cosh2 x  (1+(2δ-1) tanh x) 1/2. (52) 

We choose the monotonically increasing solution x(x) of equation (52). When x increases from -∞ to ∞ then x 
increases from -∞ to ∞. 

In the Boussinesq approximation  xu=xv. At this point (see Table in Appendix C ) 
ξ1=δ,  ξ2=1-δ,   x=tanh-1(1-2δ),  v1= v2= δ δ( )/1 2− ,  b=A 2 1/ ( )δ δ− .  (53) 

The formulas (41)-(45) and (53) give the analytic solution of the system (3.11.9)-(3.11.14) in Baines (1995). 
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At the point xη where the layer thicknesses are equal (ξ1=ξ2=1/2) we have (see Table in Appendix C ) 
 x=0,  v1=δ/ 2 ,  v2=(1-δ)/ 2 ,  s=1/ 2 ,  b=A 8. (54)  

The formulas (41a and 41b) in Lawrence (1990) give identical expressions for b at these points. 
If  δ=1/2 (κ0=1)  the formulas (42)-(51) become very simple, 
 A2=1/8,  q1=q2= 2 /8,  ξ10=ξ20=1/2.  (55) 

[in dimensional form Q1=Q2=b0H(εgH)1/2/4, (Schijf and Schönfeld 1953, p.325)] and 
 2ξ1=1-(1-1/b)1/2, 2ξ2=1+(1-1/b)1/2,  for x ≥ 0, 
 2ξ2=1-(1-1/b)1/2, 2ξ1=1+(1-1/b)1/2,  for x ≤ 0, (56) 
 v1=ξ2/ 2 ,  v2=ξ1/ 2 ,  s=1/ 2 .   

In the Boussinesq approximation v1+v2=s (one can call s the shear), q1+q2=A(δ) (one can call A the 
exchange flow rate), U=q1-q2=(2δ-1)A(δ) and qr=q1/q2=δ/(1-δ) (put ε=0 into (36), (28), (29) and (30) 
respectively). Presented above are analytical formulas for all functions shown in Figures 5-8 by Armi and 
Farmer (1986) (they used U as the independent variable) and in Figures 6-8 by Lawrence (1990) (he used qr as 
the independent variable). A(δ) changes insignificantly (max(A2)=A2(0)=A2(1)=4/27, min(A2)=A2(1/2)=4/32). 
Therefore the function U(δ) is close to linear and the graphs of all values as functions of U (Armi and Farmer 
(1986)) and as functions of δ (this paper) look similar. It is trivial that q2≡-U and qr=0 for regimes 1-3 (because 
q1=0), q1≡U and qr= ∞ for regimes 5-7 (because q2= 0).  

Table 2 is a simplified transposed version of Table 1. To get formulas for regime 4 in Table 2 we use 
solutions for regime 3 for δ=0 and for regime 5 for δ=1 and suppose that ξ10(δ) and ξ20(δ) are linear continuous 
functions for regime 4. The sign ≈ in Table 2 means that in addition to the Boussinesq approximation we also 
approximate ξ10(δ) and ξ20(δ) as linear functions and then we find  v10(δ) and v20(δ) from (17) and (19) putting 
A=2/ 27 for all δ from the interval [0,1]. 

 Table 2 
 

 
 

regime 2 
-δ ≥1/2 

regime 3 
1/2≥-δ ≥0 

regime 4 
0 ≤ δ ≤1 

regime 5 
1≤δ ≤1.5 

regime 6 
1.5≤δ 

q1 0 0 δA 2(δ/3)3/2 (δ-1) 1/2 
q2 −δ 2((1-δ)/3)3/2 (1-δ)A 0 0 
ξ10 0 (1+2δ)/3 ≈(1+δ)/3 2δ/3 1 
ξ20 1 2(1-δ)/3 ≈(2-δ)/3 1-2δ/3 0 
v10 0 0 ≈2δ/(1+δ)√3 (δ/3)1/2 (δ-1) 1/2 
v20 −δ ((1-δ)/3)1/2 ≈2(1-δ)/(2-δ)√3 0 0 

 
If ε<<1 then, until εδ<<1, the Boussinesq approximation can be also used for regimes 2, 3, 5 and 6. 

 
4. Some examples of application of the theory.  

The essential quantitative problem is the determination of the net volume exchange rate V'=Q1-Q2 and  
the net mass exchange rate M'=ρ2Q2-ρ1Q1 if we know ε and δ and vice versa (see for example Bryden and 
Kinder (1991), Hogg and Huang (1995), Chapter 4). Between M' and V' there is a simple relation  

   M'/ρ2=εQ1-V'=Q2-(1-ε)Q1.     (57) 
If M'=0 we have ε=1-Q2/Q1=1-q2/q1 and V'=εQ1. If V'=0 we have Q1=Q2 and ε=M'/(ρ2Q1). The relations 

(57) are correct for any exchange flow. For the case of pure contraction, considered in this paper,  we have 
using (27)  

   V'=√2ε A(δ)Q0( 2δ -1+εδ2/(1+ 1− εδ -εδ)),  (58) 
  M'/ρ2=√2ε A(δ)Q0( 1-2δ+εδ(1+ 1− εδ -δ)/(1+ 1− εδ -εδ)).     (59) 

Here Q0
2=gb0

2H3. For any given M' and V' one can find ε and δ from (58) and (59). If both M'/Q0  and 
V'/Q0 are order ε1/2 then δ-0.5 is not small for small ε. If M' or V' is zero then 2δ=1+O(ε). For M'=0 we have  
   2δ=1+εδ2(2-δ-ε)/(1-εδ)=1+3ε/8+O(ε2) 

   ε3/2=(1-ε)V'/( 2 (1-δ)A(δ)Q0)=4V'/Q0+O(ε5/2). 
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In the quasi-steady approximation we assume that ε(t), δ(t), M'(t) and V'(t) slowly vary in time so that the 
equations (58) and (59) are correct. 

Suppose that δ(t)=δ0+δ1sin(2πt/T) (due to tides), V'(t)=E (due to evaporation from the basin with the 
heavier fluid) and  <M'(t)>=0, here <...> means average over period T. Let δ1 and E be known constants, then ε 
and δ0 are unknown constants. One can find ε and δ0 from 
  <(1-δ)A(δ)>/(1-ε)=<δA(δ)/(1-εδ)1/2>=E/(ε3/2 2Q0).  (60)  

For quasi-steady applications of this theory it is important that the so called barotropic transport U=q1-q2 is 
not zero (U= -2/ 27) when the levels in the reservoirs are equal (δ=0) but U=0 when δ=1/2. For instance if  the 
level of the heavier fluid reservoir changes periodically H2=H1(1-ε(a+f(t)) (here H1 and a are constants, f(t) is a 
periodic function with period T and <f(t)>=0), then δ=a+f(t) and U=2A(δ)(a-0.5+f(t)) are periodic functions 
with the same period T. Note that <U(t)>=0 (this means <q1>=<q2>) if a=1/2 and f(t) is an even function. But 
generally <U(t)>≠0 and depends on a and the amplitude and behavior of f(t). Using (46) one can easily 
calculate <U(t)> for any particular a and f(t). 

In Helfrich's (1995) experiment a small tank filled with a fluid of density ρ1 and volume V0 begins to 
vertically oscillate with a displacement a0sin(2πt/T) in a large basin filled with a fluid of density ρ2. Because 
the free surface area of the small tank, S, was small  in this experiment (Sa0∼ Q0T ε ), the change of the level in 
the small basin due to flux through the contraction must be taken into consideration. Neglecting changes of 
density and volume in the large basin we have 
  dδ/dt ≈ (2π(a0/T) cos(2πt/T)+(Q2- Q1)/S)/(Hε)    (61) 
  dε/dt ≈-ε Q2/V        (62) 
The first term in the right side of the equation (61) describes the change in H2 due to oscillations of the small 
tank, the second term describes the change in H1 due to the change of the fluid volume in the small tank. 
Equation (62) describes the change of ε due to the net mass exchange M. We also can put ε=ε(0) and V=V(0) in 
the right sides of the equations (61) and (62). We get two equations for ε(t) and δ(t) which can be easily solved 
with initial conditions  ε(0)=ε0, δ(0)=0. 

The above examples illustrate some applications of the theory to steady and quasi-steady flows. 
The equations (58) - (60) are valid for regime 4. If δ(t) becomes negative and/or larger than 1, then these 

equations must be extended using formulas for q1 and q2 for regimes 2, 3, 5 and 6. 
  

5. Discussion 
a. Comparison with one layer flow. When the fluid on both sides of the contraction is the same density then 

only one-directional flow is possible. A steady flow occurs if 2H1>3H2 or 2H2>3H1. When the fluids on both 
sides of the contraction are of different densities exchange flow takes place only if the level of the lighter fluid 
is slightly higher than the level of the denser fluid (in the case of the rigid lid, the pressure on the lid far from 
the contraction on the side of the lighter fluid is slightly higher than the pressure on the rigid lid far from 
contraction on the side of the denser fluid). Precisely, the relative level difference γ must be less than the 
relative density difference ε (relative pressure difference must be less then the relative density difference in the 
case of the rigid lid). The maximum velocity of exchange flow (= 2εgH ) is smaller than the maximum 
velocity of steady one layer flow (=√2gH). 

When the fluid on both sides of the contraction is the same density the flux through the contraction can be 
zero if the levels in the basins are equal (H1=H2). In the case of different densities the exchange flow rate 
Q1+Q2 is always larger than some positive value. In the Boussinesq (or rigid lid) approximation Q1+Q2≥
Qmin= ε Q0/2 and reaches this minimum value when δ=1/2. Here Q0

2=gb0
2H3. The discharge for one layer 

steady flow through a contraction is 2Q0/ 27. 
b. Many features of real exchange flows were neglected in this paper. We have found the discharge 

coefficients q1 and q2 for steady flow using a simple model which does not include effects such as friction, 
decreasing channel width with depth, changing depth along a channel, etc.  

The expressions Q1,2
2= q1,2g’b0

2H3 can always be written by replacing q1,2 with q1,2ef. To take into 
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account the effects of friction and/or decreasing channel width with depth on the discharge coefficients q1 and 
q2 we introduce correction coefficients C1 and C2 such that 
 q1ef=C1q1,    q2ef=C2q2,  (63) 
where q1 and q2 are the discharge coefficients from Table 1. Corresponding modifications must be made in (58) 
- (60). 

If the channel width b(x,z) increases from the bottom to the free surface and b0 in Q1,2
2= q1,2g’b0

2H3 is the 
minimum width of the free surface, then 1>C1(δ)>C2(δ). For some b(x,z)  the correction coefficients C1(δ) and 
C2(δ) can be found analytically. 

To include effects of friction, some empirical friction coefficients are required in the momentum equations. 
Alternatively, it is reasonable to introduce empirical correction coefficients C1<1 and C2<1 in (63) to take 
account of the resistance losses (we assume that, similar to one layer flow, see Bakhmeteff, 1932, pp. 42-43, 
the friction  reduces discharges of both layers). These coefficients are different for different contractions.  

Due to friction the depth of the interface and the depth of the zero velocity line can differ significantly in real 
flow, especially for regimes 2,3, 5 and 6 (see for example Arita and Jirka, 1987, Fig.2). This and other effects 
of friction are outside the scope of our consideration. 

When we model continuously stratified flow by two-layer flow the correct choice of ρ1 and  ρ2 is very 
important. A small difference in ρ1 and/or ρ2 can lead to significant difference in ε and as a result a significant 
differences in δ, q1 and q2.  

The key relation of the theory (26) was obtained under the assumption that b(x) infinitely increases far from 
the contraction. Let a maximal width of the lighter fluid reservoir be a constant b- at x<x-<0 and a maximal 
width of the heavier fluid reservoir be a constant b+ at x >x+>0. One can use the solution obtained in section 3 in 
the interval [x-,x+] and take ηi(x)=ηi(x-), ui(x)=ui(x-) at x<x- and ηi(x)=ηi(x+), ui(x)=ui(x+) at x>x+ (i=1,2). Note 
that ηi(x) and ui(x) can be arbitrary constants in the channel with constant width. 
c. Concluding remarks. Exchange flow through a contraction takes place because the fluids on either side of the 
contraction are of different densities and levels. The important result is that for small ε the existence of an 
exchange flow and the solution depend only on the  ratio of  the relative  reservoir level difference γ to the 
relative density difference ε, δ=γ/ε. In contrast to previous authors who presented results of numerical 
calculations we obtained the complete analytical solution of the problem. In section 4 we demonstrated 
application of the analytical theory for the solution of some practical problems. The choice of δ as an 
independent parameter is more successful than the choice of "net discharge" U=q1-q2 or the discharge ratio 
qr=q1/q2 to obtain an analytical solution for all regimes and to understand the underlying physics. 
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Appendix A. Denser fluid plunging under a stationary lighter fluid  
If δ≤0 then there is no flow of lighter fluid (Fig. 1 b-d). The Bernoulli and continuity equations for the 

denser fluid are 
 u2

2=2gζ,  (A.1) 
 u2η2b=Q2,  (A.2) 
in the region upstream of the point (x>x*) where the flowing layer plunges under the stationary fluid; and 
 u2

2=2g(H2-H1+εη1),  (A.3) 
 u2η2b=Q2,  (A.4) 
in the region downstream of the plunging point (x<x*). We also have 
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 η2+ζ=H2 at x>x*, (A.5) 
 η1+η2=H1 at x<x*. (A.6) 
Here u2, η2 and Q2 are the velocity, thickness and discharge of the denser fluid, ζ is the free surface 
displacement, η1 is the thickness of the lighter layer. 

Eliminating u2 and ζ from (A.1), (A.2) and (A.5) we get 
 (H2-η2)η2

2=Q2
2/2gb2       at x>x*. (A.7a) 

Eliminating u2 and η1 from (A.3), (A.4) and (A.6) we get 
 (H1-η2+(H2-H1)/ε))η2

2=Q2
2/2εgb2      at x<x*. (A.7b) 

We are looking for a continuous solution of the equation (A.7) with boundary conditions 
 η2 → 0   at x→-∞,   η2 →   H2   at x→ ∞. 

When the plunging point is downstream of the position of minimum width (x*<0, regime 1), the 
requirement that the left side of the equation (A.7a) must have a maximum at x=0, because the right side has a 
maximum at x=0, gives 
 η20=2H2/3,   Q2

2=gη20
3b0

2.  (A.8) 
The last expression gives u20

2=gη20. Putting η2(x*)=H1 and Q2 from (A.8) into (A.7a) we get the equation for 
the position of the plunging point x* 
 b2(x*)/b0

2=4H2
3/(27H1

2(H2-H1)).  (A.9) 
Therefore regime 1 exists when 2H2/3>H1>0. 

When the plunging point is upstream of the position of minimum width (x*>0, regime 3), the requirement 
that the left side of the equation (A.7b) must have a maximum at x=0, because the right side has a maximum at 
x=0, gives 
 η20=2(H1+(H2-H1)/ε)/3,   Q2

2=εgη20
3b0

2. (A.10) 
The last expression gives u20

2=εgη20. Putting η2(x*)=H1 and Q2 from (A.10) into (A.7b) we get the equation for 
the position of the plunging point x* 
 b2(x*)/b0

2=4(H1+(H2-H1)/ε)3/(27H1
2(H2-H1)). (A.11) 

Therefore regime 3 exists when H2>H1>H2/(1+ε/2). 
When the plunging point is at the position of minimum width (x*=0, regime 2) then η20 =H1 (see Fig.1c). 

Putting η20=H1 in (A.7a) we have 
 Q2

2=2g(H2-H1)H1
2b0

2. 
This gives u20

2=2g(H2-H1). 
The layer thickness η2 decreases and velocity u2 increases in the flow direction.  If one defines the 

critical velocity as (gη20)
1/2  for regime 1, as  (2g(H2-η20))

1/2  for regime 2 and as  (εgη20)
1/2 for regime 3 then 

“the flow upstream of the minimum width is subcritical and downstream of it is supercritical” (Wood (1970), § 
2.2(a)). 

Appendix B. Lighter fluid running up on a stationary denser fluid 
If 1≤δ then there is no flow of denser fluid (Fig. 1 f-h). The Bernoulli and continuity equations for the 

lighter fluid are 
 u1

2=2gζ,  (B.1) 
 u1η1b=Q1,  (B.2) 
We also have 
 η1+ζ=H1 at x<x*, (B.3) 
in the region upstream of the plunging point where the flowing layer runs on the stationary fluid; 
 ζ+η1+η2=H1 at x>x*, (B.4) 
 ζ+εη1=H1-H2 at x>x*. (B.5) 
in the region downstream of the plunging point. The last equation is the condition of no motion of the denser 
fluid. From (B.4) and (B.5) we have (1-ε)η1(x*)=H2. Here u1, η1 and Q1 are the velocity, thickness and 
discharge of the lighter fluid. 

Eliminating u1 and ζ from (B.1), (B.2) and (B.3) we get 
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 (H1-η1)η1
2=Q1

2/2gb2       at x<x*. (B.6a) 
Eliminating u1 and ζ from (B.1), (B.2) and (B.5) we get 
 (-η1+(H1-H2)/ε))η1

2=Q1
2/2εgb2      at x>x*. (B.6b) 

We are looking for a continuous solution of the equation (B.6) with boundary conditions 
 η1 → 0   at x→∞,   η1 →   H1   at x→ -∞. 

When the plunging point is upstream of the position of minimum width (x*>0, regime 7), the requirement 
that the left side of the equation (B.6a) must have a maximum at x=0, because the right side has a maximum at 
x=0, gives 
 η10=2H1/3,   Q1

2=gη10
3b0

2.  (B.7) 
The last expression gives u10

2=gη10. Putting η1(x*)=H2/(1-ε) and Q1 from (B.7) into (A.6a) we get the equation 
for the position of the plunging point  
 b2(x*)/b0

2=4(1-ε)2H1
3/(27H2

2(H1-H2/(1-ε))). (B.8) 
Therefore regime 7 exists when 2(1-ε)H1/3>H2>0. 

When the plunging point is upstream of the position of minimum width (x*>0, regime 5), the requirement 
that the left side of the equation (B.6b) must have a maximum at x=0, because the right side has a maximum at 
x=0, gives 
 η20=2(H1-H2)/3ε,   Q2

2=εgη20
3b0

2.  (B.9) 
The last expression gives u20

2=εgη20.  
Putting η1(x*)=H2/(1-ε) and Q1 from (B.9) into (B.6b) we get the equation for the position of the plunging 

point 
 b2(x*)/b0

2=4(1-ε)2((H1-H2)/ε)3/(27H2
2(H1-H2/(1-ε))). (B.10) 

Therefore regime 5 exists when (1-ε)H1>H2>(1-ε)H1/(1+ε/2). 
When the plunging point is at the position of minimum width (x*=0, regime 6) we put η10 =H2/(1-ε) into 

(B.6a) to find 
 Q1

2=2g(H1-H2/(1-ε))(H2/(1-ε))2b0
2. 

This gives u10
2=2g(H1-H2/(1-ε)). 

Appendix C. The solution at x=xv, x=xu and x=xη. 
Let the point where the layer velocities are equal (u1=u2) be defined as xu and the point where the layer 

thicknesses are equal (η1=η2) be defined as xη. The solution of the system (31)-(32), (34)-(35) has a simple 
form at points -∞, xv, xu, xη and ∞ (see Table ). To calculate the channel width at these points from (33) we 
need to know A(ε,δ). 

"To measure the degree of rapidity of flow" Bakhmeteff (1932), pp. 64-65, introduced "the kinetic flow 
factor" Fi(x)=2vi2/ξi(x) (i=1,2) which is "twice the ratio of the kinetic energy head to the potential energy head". 
Recent authors use the notation F=Fr2, where Fr is called the local Froude number (Baines (1995), p.38 and 
§1.4). Wood (1970, Fig.4) showed that the combination F1+F2-εF1F2 is equal to unity at the position of 
minimum width and some other point and less than unity between these points. He called them "points of 
control". 

From (31) and (32) we get 
 (1-εδ)F1=2δκ2/(κ+κv),   F2=2(1-δ)/(κ+κ2/κv). 

In particular F1+F2-εF1F2=1 at x=xv. Equation (37) ensures that F1+F2-εF1F2=1 at x=0. 
 
 

Table  
x -∞ xv xu xη ∞ 

ξ 0 (1-δ)δ/(2-εδ-εδ2) δ (1-δ)/(1+ 1− εδ ) δ2/(2-2εδ+εδ2) δ 
ξ1 1 δ(1-εξ) δ (1-εξ)/2 0 

ξ2 0 (1-δ)(1-εξ) (1-δ) 1− εδ  (1-εξ)/2 1-εδ 
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v1
2
 0 ξ ξ ξ δ 

v2
2 

1-δ ξ(1-εξ) ξ (1-δ)2(1-εξ)/2 0 

s2 
1-δ 2(1-δ)δ(1-εδ) δ (1-δ)(1+ 1− εδ ) (1-εξ)/2 δ(1-εδ) 

b2
(x) ∞  2A2/(δ (1-δ)(1-εξ)3) A2/(ξ(1-εδ))  8A2/(1-εξ)3 ∞ 

(1-εδ)F1 0 1-δ 2(1-δ)(1-εδ)/(1+ 1− εδ ) 2δ2 ∞ 

F2
 ∞ δ 2δ/(1+ 1− εδ -εδ) 2(1-δ)2 0 

 
We see from the Table that xv<xη when δ>0.5 and xv>xη when δ<0.5 (because ξ monotonically increases 

with x) and that 2s2(x)<1 for 0<ε<1 at points xv, xu and xη. We also see that F1(xv)=F2(xv) when 1-εδ=κv (η
2(xv)/H2=η1(xv)/H1 and H1

2ρ1=H2
2ρ2 in dimensional form). This gives  δ=1/(1+ 1− ε ). 

Wood (1970) called xv the point of virtual control and found ξ1(xv), ξ2(xv), v1
2(xv) and v2

2(xv) (equations 
(22)-(25) in Wood, 1970). Lawrence (1990) noted that the solution is simple when F1(xv)=F2(xv). Indeed, for δ
=1/(1+ 1− ε ): 

(25) gives κv= 1− ε ; 
using (20) we get ξ1(xv)=2/(3+κv) and ξ2(xv)=2κv/(3+κv) (see equations (24) and (25) in Wood, 1970), (26) 

takes the form qr
2=κv

-3 (the last three equations are identical to equations (44a,b) and (43) in Lawrence (1990), 
the graphs of ξ1(xv), ξ2(xv) and qr as functions of ε are presented in Fig. 10  in Lawrence, 1990); 

(35) gives s2(xv)=4(1-δ)/(3+κv); 
we have 2v1

2(xv)=δξ1(xv) and 2v2
2(xv) =δξ2(xv) because F1(xv)=F2(xv)=δ; 

from (33)-(35) one gets equation s(s2-(1-δ))=(2δ-1)(1-δ)A/b which shows that s(x) takes maximal value 
1 − δ at x=±∞ and has the minimum s2(0)=4(1-δ)/(3+κv) at x=0, therefore xv=0. Putting x=0 in the equation 

for s gives A2=4κv(1+κv)/(3+κv )
3; 

from (27) we have q1
2=4δ/(3+κv)

3, q2
2=4δ/(1+3/κv)

3. 
Thus xv>0 if δ<1/(1+ 1− ε ) and xv<0 if δ>1/(1+ 1− ε ); q1>q2 and ξ1(xv)>ξ2(xv) for δ=1/(1+ 1− ε ).  

Appendix D. General solution 
Introducing the parameter x=tanh-1(2ξ2-1) the solution of the system (31)-(35) can be written as   
  -∝<  x <tanh-1(1-2εδ)  
 2ξ1=1- tanh x - εδ2(1+ tanh x)2/(2(1-εδ)s2), 
 2ξ2=1+ tanh x, 
 2v1=δ (1+ tanh x)/(s 1− εδ ), 
 2v2=(1-δ) (1- tanh x- εδ2(1+ tanh x)2/(2(1-εδ)s2))/s, 
 4s2=1+( 2δ -1)tanh x + ((1+(2δ -1)tanh x)2-4εδ2(1-δ)(1+ tanh x)2/(1-εδ))1/2 
 b(x)=4As/( cosh-2 x + εδ2(1+ tanh x)3/(2(1-εδ)s2)). 
Here A(ε,δ) is given by (38)-(40). The analytical formulas for graphs presented on Fig. 9(b) (with ε=.5 and δ≈
.8) in Lawrence (1990) are given above. 

Appendix E. Notation 
The following symbols are used in sections 1-3 of this paper: 
A(ε,δ) = is introduced by (27), the analytical expression is given by (38)-(40); 
b(x) = the channel width; 
b0 = the minimal channel width; 
b(x)=b(x)/b0 = the non-dimensional channel width;  
c = 2εgH= the maximal velocity of an exchange flow; 
g = the gravitational acceleration; 
H1 and H2 = the lighter and denser fluid  levels far from a contraction; 
H = max (H1,H2); 
Q = the discharge; 
q=Q/(cb0H) = the discharge coefficient or non- dimensional discharge; 
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s2(x)=(1-δ)ξ1+δξ2, see (35); 
u = the velocity;  
v=u/c = the non-dimensional velocity; 
x = the long channel coordinate; 
x* = the position of the plunge point; 
x = the parameter (-∞ < x < ∞) in (47)-(52); 
α = the parameter (0< α < ∞) in (38)-(40); 
ρ = fluid density; 
ε=(ρ2-ρ1)/ρ2 = the positive relative density difference; 
γ=(H1-H2)/H = the relative reservoir level difference; 
η = thickness of the layer; 
ξ=ζ/εH = the non-dimensional free surface displacement; 
ξ1=η1/H and ξ2=η2/H are the non-dimensional thickness of the lighter and denser layers; 
δ=γ/ε = the ratio of relative reservoir level difference to relative density difference; 
κ (x)=ξ2(x)/ξ1(x) = the ratio of the layer thicknesses. 

Subscripts 
0 = at the narrowest cross-section; 
1 = layer of lighter fluid; 
2 = layer of denser fluid. 
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LIST OF FIGURES 
Figure 1. Plan view (a) for flow through a contraction and side views (b)-(h) for various flow regimes. 
Calculations of free surface (solid lines) and interface (dashed lines) were made for ε=10-3 using (1) and (2) for 
(b)-(d), (33) and (34) for (e) and (7)-(10) for (f)-(h). The corresponding values of the parameter δ are (b) δ = -
667; (c) δ = -62.5; (d) δ =-0.25;        (e) δ  = 0.25; (f) δ = 1.1; (g) δ = 62.5 and (h) δ = 667.  
Figure 2. Graphs of q1

2 and q2
2 against δ for ε = 0, 0.25, 0.5, 0.75, 1. 

Figure 3. Discharge coefficients q1 and q2 against δ for ε=0 (______), 0.25 ( _  _  _ ),  
0.4 ( ....... ), 0.6 (_ . _ . _ .). 
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Figure 4. Non-dimensional layer thickness ξ1(0), ξ2(0) and free surface displacement ζ(0)/H against δ for  ε=0 ( 
_ . _ . _ . ), 0.25 (------- ), 0.4 ( ______ ), 0.6 ( _  _  _ ). 
Figure 5. Non-dimensional layer thickness ξ1(0) and ξ2(0) against δ for ε=0 (_____),  
0.25 (_ . _ . _ .), 0.4 ( ______ ), 0.6 ( ....... ) and Wood's (1970) experimental data. The numbers in the 
parentheses show the values of ε for corresponding experiment. 

 
 

 
 


