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Abstract

The steady hydrostatic flow through a channel of rectangular cross section connecting
reservoirs of infinite width and depth and containing inviscid fluids of different densities and
levels is studied. The main goal is the determination of the discharges of the lighter and denser

Žfluids in terms of the external conditions reservoir levels, fluid densities and variation of width
.and depth along a channel . It is shown that the key parameter is d , which is the ratio of relative

reservoir level difference, g , to relative density difference, ´ . If d-0 then the denser fluid
Ž .plunges under the stationary lighter layer. If d)d 1-d -1.5 then the lighter fluid runs up

) )

on a wedge of stationary heavier fluid. Here d depends on the geometry of the constriction. The
)

solutions describing these regimes are stated. If 0-d-d then both layers are in motion. A
)

qualitative analysis of the solution for arbitrary bottom shape and channel width and arbitrary ´ is
presented and the problem is reduced to a system of two equations which can be easily solved
numerically for any particular channel profile. We give detailed analyses for the following two

.cases: 1 the narrowest width of the channel is on the side of the heavier fluid and the top of the
.sill is on the side of lighter fluid; 2 the minima in channel depth and width coincide. In the

second case the discharges for one class of geometries in the Boussinesq approximation are
calculated and discussed. q 1998 Elsevier Science B.V. All rights reserved.

Keywords: Strait; Estuary; Two-layer fluid; Exchange flow

1. Introduction

Many deep estuaries and semi-enclosed seas are separated from the open ocean by
constrictions. The exchange through the constrictions affect the hydrography of such
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Žestuaries and seas and is important to the ocean and its adjoining shelf seas as well see,
.e.g., Hogg and Huang, 1995 . Often flows through the constrictions change from an

exchange regime to one layer flow in either direction. Not only is the instantaneous ‘net
discharge’ not zero most of the time, but the ‘net discharge’ averaged over time is not

Ž .zero as well due to river discharge or evaporation, for example . Therefore, it is
important to be able to calculate the discharges of straits and silled fjords for all possible

Ž . Ž .regimes and with arbitrarily changing width b x and depth h x along the channel.
In the cases of an exchange flow through a pure contraction or a pure sill, the layer

discharges do not depend on depth or width profiles as long as the minimal cross section
stays the same. However, the discharges for a contraction are different from those for a
sill. In this paper we are studying the effect of the change in depth vs. width along a
channel on the layer discharges. There are dozens of papers studying the effects of
friction, stratification, rotation, nonrectangular cross section and time dependence on a
flow through a constriction with constant width or depth. These and other effects are
outside the scope of our consideration.

In this paper we consider a steady flow through a constriction between two large
basins, where each basin contains a homogeneous fluid of different density and surface

Ž .level. Such a flow, called ‘a lock exchange flow’ Wood, 1970 , differs from the outflow
through a channel from a large basin of two layered fluid, called ‘withdrawal from a

Ž .layered fluid’ Wood, 1968 when both layers flow freely in the same direction. Both
Ž .type of flow are described by the same equations Bernoulli and continuity but with

different conditions far from the constriction. In the ‘withdrawal’ case, the thicknesses
of the layers diminish in the same direction. In contrast to a flow of a two layered fluid

Ž Ž .in a channel with an obstacle, a contraction or both see examples in Baines 1995
Ž .Chap. 3 , we consider the limit when the depth and width of the minimal cross section
of a constriction are much smaller then the width and depth of the basins. In this limit
we can assume that the width and the depth of the basins infinitely increase on both

Ž .sides of a sill and a narrow, respectively, where they have unique minima see Fig. 1 .
Ž Ž . Ž .In the case of the free outflow see, e.g., Bakhmeteff 1932 , p. 41 or Henderson

Ž . .1966 , Section 6.4 of a homogeneous fluid from a large basin through an open channel
of rectangular cross section the discharge can be easily found using the specific energy

Ž . Ž . Ž .equation, introduced by Bakhmeteff 1932 Section 15 , see also Henderson 1966 ,
Ž . Ž Ž . .p. 31 . In this case the critical depth Bakhmeteff 1932 , p. 35 will be at xsx soq

3r2 'Ž Ž . . Ž .that the discharge Qs2c 1qh x rH Hb x r 27 . Here, H is the reservoir0 q q
Ž .level above the sill datum, h x is the channel depth calculated from sill crest,

Ž .1r2c s 2 gH is the velocity reached by an initially motionless fluid parcel falling from0

a height H and x is the position of the minimum of the functionq

S x s Hqh x b2r3 x . 1Ž . Ž . Ž . Ž .Ž .
Ž .The function S x has a minimum between the sill and the narrow and increases

< <monotonically to infinity with x outside this range. Between the sill and the narrow
Ž . Ž .S x can have complicated behavior and we assume that S x has a unique minimum

Ž .for simplicity. The discharge depends on the minimum of the function S x but will not
Ž . Ž .change with any changes of b x or h x as long as this minimum stays the same.
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The discharge of a fluid of density r , completely covered by motionless fluid of2
3r2 'Ž Ž . . Ž .density r , outflowing from a large basin is Qs2c 1qh x rH Hb x 27 .1 q q

Ž .'Here cs 2´ gH which is less than c due to Archimedes force is the velocity0

reached by an initially motionless fluid parcel falling from a height H in the fluid of
Ž .density r , ´s r yr rr . If the minima in channel depth and width coincide, then1 2 1 2' Ž .Qs2Q r 27 , where Q scb H, b smin b x . We will use c and Q as a typical0 0 0 0 0

velocity and a typical discharge to introduce the nondimensional variables.
The exchange flow case, however, is not quite so straightforward. In addition to the

Bernoulli and continuity equations we need two more equations to find the unknown
Ž .layer discharges. Wood 1970 showed that the condition that the thicknesses of the

moving layers decrease smoothly from their upstream values to zero in the infinitely
wide downstream reservoirs, gives these two additional equations which provide the
complete system of algebraic equations determining a unique solution. This system

Ž .relates the layer discharges, two unknown locations so-called critical points and the
Ž . Ž .layer thicknesses at these locations. Farmer and Armi 1986 and Dalziel 1991

considered the geometries for which one or both critical points are known a priori. Some
Žauthors assumed that the critical points are at the sill and at the narrowest section see,

Ž . Ž . Ž . Ž . Ž ..e.g., Bryden and Kinder 1991 , Eqs. 12 – 13 ; Oguz et al. 1990 , Eq. 16 . But it is
obvious that this never occurs if the width changes at the sill and the depth changes at

Ž Ž . Ž ..the narrow see Eq. 13a in Armi 1986 .
The results of numerical calculations with the Boussinesq approximation for channels

of rectangular cross section, where the width changes in the region with flat bottom and
Ž .the depth changes with constant width, were presented by Farmer and Armi 1986

Ždepth increasing to infinity on both sides of a sill in a channel of uniform width, then
. Ž . Žwidth increasing to infinity in infinitely deep reservoirs and Dalziel 1991 the same as

above except with the width monotonically increasing in the reservoirs with a constant
.finite depth . They used the difference of the nondimensional discharges as the indepen-

dent parameter and showed graphs of velocities and thicknesses of the layers at the sill
and nondimensional discharges vs. this parameter.

ŽIn this paper a steady flow through a channel with rectangular cross section and
Ž . Ž . .varying width b x and depth h x along the channel connecting reservoirs with fluids

Ž .of different densities, r and r , and levels, H and H , is examined see Fig. 1 . To1 2 1 2
Ž .avoid unnecessary complications we assume that the channel width b x has a unique

minimum b at xsx and monotonically increases to infinity at x™"A , the channel0 b
Ž .depth h x has a unique minimum equal to zero at xs0 and monotonically increases to

Ž Ž . Ž . .infinity at x™"A so b x and h x are arbitrary functions under these conditions .
The key parameter is dsgr´ , which is the ratio of relative reservoir level difference

Ž .gsz rH to relative density difference ´ . Here z sH yH , Hsmax H , H . If` ` 1 2 1 2
Žd-0 then the denser fluid plunges under a motionless lighter layer regimes 1–3, Fig.

. Ž1c–e; the discharge of lighter fluid Q s0 . If d)d by definition, d is the1 ) )

.minimum d when the denser fluid is arrested then the lighter fluid runs up over a
Žmotionless wedge of denser fluid regimes 5–7, Fig. 1g–i; the discharge of denser fluid

.Q s0 . The solutions for regimes 1–3 and 4–7 are similar to well-known solutions for2

one-layer flow. Therefore, the results for these regimes are simply stated in Section 2
and their derivation is described. Regimes 1, 2, 3, 5, 6 and 7 differ in the positions of the
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Ž .tip of the wedge of the stagnant fluid the plunge point; see Wood, 1970, p. 676 and in
the dependence of Q and Q on d .1 2

Ž .If 0-d-d then both layers are in motion regime 4, Fig. 1f . Unlike the cases of
)

Ž . Žpure contraction or pure sill in this case the discharge coefficients q ´ , d and q ´ ,1 2
. Ž .d which are nondimensional discharges q sQ rQ are different for channels1,2 1,2 0

Ž . Ž .with different h b . As for a pure contraction Wood, 1970 , for a channel with arbitrary
Ž . Ž .width b x and depth h x the requirement that the thicknesses of both layers

monotonically decrease in the respective directions of their flows gives the complete
system of eight equations which determine a unique solution. This system is reduced to

.two equations in Appendix A. We analyze two cases in detail: 1 the narrowest width
Ž . Ž .b sb x of the channel is on the side of the heavier fluid x )0 and the top of the0 b b

Ž . .sill at xs0 is on the side of the lighter fluid; 2 the minimum channel depth and
width are at the same location, xs0.

Ž . Ž .In the first case, when d increases from 0 with q s0 to d with q s0 the1 ) 2

position of one critical point decreases from x to x -0 and the position of anotherq )

critical point decreases from ` to x . The simple equations from which one can find db )

Ž .and x are presented. In the Boussinesq approximation ´<1 the problem is reduced
)

Ž . Ž .Fig. 1. Top a and side b views of a channel geometry. The origin of the along channel axis x is chosen at
Ž . Ž .the top of a sill. Side views for the seven possible flow regimes are shown in c – i .
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Ž .Fig. 1 continued .
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Ž .Fig. 1 continued .

Ž Ž . Ž .to one equation which connects the critical point positions compare with steps i – xi
Ž . .of Dalziel 1991 , p. 147 . Having the critical points one can calculate corresponding

values of d and the discharge coefficients from explicit algebraic formulas.
In the second case one critical point can be taken at the narrowest section. Then

w xanother critical point varies over the interval `, x when d varies over the interval
)

w x0,d . Here, x is the furthest extent of the tip of the wedge of the stagnant denser
) )

fluid. The problem is reduced to one equation. The calculations are made for the
Ž . Ž .particular case when the bottom profile h x and the channel width b x are connected
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2Ž . 2w 2 Ž . x3 Ž .by the relation b x sb 1qa h x rH . Here, h x is an arbitrary positive function0
Ž .with h 0 s0; a, b and H are arbitrary constants. In this case the discharge0

Ž . Ž . Ž .coefficients q ´ ,d ,a and q ´ ,d ,a do not depend on h x . It is shown how the flow1 2
2 Ž . Ž .changes when a increases from 0 sill to ` contraction .

A discussion of the relative effects of the changes of the depth and channel width is
included in Section 4.

The conventions adopted throughout this paper are as follows:
subscript x means a derivative; subscripts y, q, ), b, c, h or u indicate the value
of a corresponding function at the point x , x , x , x , x , x or x , respectively;y q ) b c h u

the lighter fluid moves from left to right and the denser fluid moves from right to left;
all values and parameters are positive except the levels H and H of the lighter and1 2

denser fluids above the sill, their difference z and the parameters g and d .`

2. Plunging and run up

We consider the problem sketched in Fig. 1 of two-layer flow through a channel of
rectangular cross section with slowly varying width and depth connecting two reservoirs

Ž .of infinite width and depth. We assume that the bottom topography h x monotonically
Ž . Ž . Ž .decreases h -0 at x-0 and increases h )0 at x)0, h 0 s0; the channelx x x

Ž .width varies so that b -0 at x-x and b )0 at x)x , b x s0. We also assumex b x b x b
Ž .that width and depth change slowly i.e., h <1 and b <1 in order to use thex x

hydrostatic approximation and to neglect the dependence on a second horizontal
coordinate. We limit our discussion to the steady flow of two homogeneous inviscid
fluids. It is obvious that parts of the channel where both width and depth are constants
can be excluded from consideration without any effect on the result, so long as we
neglect mixing and friction.

We introduce the following non-dimensional variables

jszr´ H , j sh rH , j sh rH , Õ su rc,1 1 2 2 1 1

2r3 2r3
Õ su rc, h sj b ,h sj b2 2 1 1 2 2

hshrH , bsbrb , w x sS x rHb2r3 , 2aŽ . Ž . Ž .0 0

and non-dimensional coefficients

q sQ rQ , q sQ rQ . 2bŽ .1 1 o 2 2 o

Here z is free surface displacement, and j , j , Õ , Õ , Q and Q are the thickness,1 2 1 2 1 2

velocity and discharge of the lighter and denser fluid, respectively. Fig. 1 shows
dimensional variables.

2.1. A denser fluid plunging under a stationary lighter layer

Ž .If the level of the heavier fluid reservoir is higher H GH , then the lighter fluid is2 1
Ž .at rest velocity u s0; Fig. 1c–e . The position where the flowing layer plunges under1

Ž .the stationary layer Wood, 1970, p. 676 is denoted as x . From the Bernoulli and
)
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continuity equations of the moving denser layer one can get the non-dimensional
Ž Ž . Ž .specific energy equation Bakhmeteff 1932 , Section 1.5 or Henderson 1966 , Section

.2.6

h q´ q2rh2 sw x for xGx , 3aŽ . Ž .2 2 2 )

and

h qq2rh2 sm x for x Gx , 3bŽ . Ž .2 2 2 )

here
2r3

m x s 1qh x yd 1y´ b x . 4Ž . Ž . Ž . Ž . Ž .Ž .
Ž .We denote the position of the minimum of the function m x as x , which is they

Ž . Ž .function of d and ´ , x d ,´ . When ds0 then x and x coincide, x 0,´ sx .y y q y q
Ž Ž .The specific energy curve see Fig. 30 in Bakhmeteff 1932 or Figs. 2–3 in

Ž .. Ž . Ž .Henderson 1966 , defined by the left side of the Eqs. 3a and 3b as function of h ,2

tends to infinity as h ™0 and h ™`. The curve has a minimum, corresponding to a2 2

certain position called the critical point and designated as x . There are three possibili-c
Ž . Ž .ties: the critical point is upstream x )x , regime 1, x sx , at x sx , regime 2c ) c q c )

Ž . Ž .or downstream x -x , regime 3, x sx of the plunging point see Fig. 1c–e .c ) c y
Ž .For regime 1 the condition that the left side of the Eq. 3a must have a minimum at

xsx , where the right side has a minimum, gives ´ q2 s4w 3 r27. For regime 3 theq 2 q
Ž .condition that the left side of the Eq. 3b must have a minimum at xsx , where they

Fig. 2. Typical behavior of channel geometry functions w and b2r3 along a channel with h and b beingx x x x

monotonically increasing and the position of minimum width x )0. Behavior of the ‘kinetic flow factor’b
Ž . 2Ž . 3Ž . w xF x;d ,´ s2 q d ,´ rh x;d ,´ for some particular ´ and d inside the interval 0, d is also shown.2 2 2 )
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2r3 Ž .Fig. 3. The intersections of the functions F w and d b give the graphical solution of Eq. 31 .2 x x

right side has a minimum, gives q2 s4m3 r27. For regime 2 putting xsx and2 y )

Ž . Ž . Ž . Ž . 2 Ž .2 Ž .h x sw x q´db2r3 x into Eq. 3a we get q syd h x b2r3 x . Putting2 ) ) ) 2 2 ) )

Ž . Ž Ž . . Ž . Ž .h x s h x q1q´d b2r3 x into Eq. 3a we get the equation for the position2 ) ) )

of the plunge point

'b x 1q´dqh x sq r yd , 5Ž . Ž . Ž .Ž .
) ) 2

Ž .for regime 1, x -x , and for regime 3, x )x . It was pointed out by Wood 1970 ,
) q ) y

Ž .pp. 677–8 that h is discontinuous at the plunge point but only the condition that h2 x 2

is a continuous function is used.
The regime boundaries in terms of ´ and d can be found from the conditions
Ž . Ž . Ž . Ž .j x -j x for regime 1 and that j x -j x for regime 3 and are presented2 ) 2 c 2 c 2 )

in the first column of the Table 1. The first three rows of Table 1 present the discharge
coefficients q and q and the nondimensional thicknesses of lighter and denser layers1 2

Ž . Ž .j sh x rH and j sh x rH at the position x as functions of ´ and d for1c 1 c 2 c 2 c c

these three regimes.

2.2. A lighter fluid running up oÕer a stationary denser wedge

Ž .If the level of the lighter fluid reservoir is so high that dGd H GH q´d H ,
) 1 2 ) 1

then the denser fluid is at rest, u s0, and the lighter fluid runs up over a wedge of the2
Ž .denser fluid Fig. 1g–i .

From the Bernoulli and continuity equations of the moving lighter layer one can get
the non-dimensional specific energy equation

h q´ q2rh2 sw x for x Gx , 6aŽ . Ž .1 1 1 )

and
2r32 2h qq rh sdb x for xGx . 6bŽ . Ž .1 1 1 )
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Table 1

q q j j1 2 2 c 1c

3r2 'Ž Ž .. Ž .Regime 1: yd G 1q h x r3´ 0 2w r 27´ 2 1q h r3, x s x yq q q c y
Ž Ž ..Regime 2: 1q h x r3´ Gyd Gq

'Ž Ž .. Ž .1q h x r 2q´ 0 b j yd 1q h q´d , x s x) 0y 2 c) ) c
)

3r2 'Ž Ž .. Ž . Ž Ž .. Ž Ž ..Regime 3: 1q h x r 2q´ Gyd G0 0 2m r 27 2 1q h yd 1y´ r3, x s x 1q h qd 2q´ r3, x s xy y y c y y c y
3r2Ž . Ž . Ž . Ž .Regime 5: d Fd F3 1q h r 2q´ 2 dr3 0 1q h yd 2q´ r3, x s x 2dr3, x s x

) q b c b c b
Ž . Ž . Ž . Ž Ž . . Ž .Regime 6: 3 1q h r 2q´ Fd F b 1q h y´d 0 0 1q h x y´d r 1y´ , x s xq ) ) q c )

1r2 3r2Ž .Ž Ž .. Ž . Ž .1q2´ 1q h x r3´ d y1y h r 1y´q y
3r2 'Ž .Ž Ž .. Ž .Regime 7: 1q2´ 1q h x r3´ Fd 2w r 27´ 0 y 2 1q h r3, x s xq q q c q
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As in the case with motionless lighter fluid, three regimes are possible: the critical
Ž . Ž .position lies downstream x )x , regime 5, x sx , at x sx , regime 6 orc ) c b c )

Ž . Ž .upstream x -x , regime 7, x sx of the plunging point Fig. 1g–i .c ) c q
2 3 Ž .3In particular for regime 5 we get 2 q sj s 2dr3 . The position of the plunging1 1c

Ž .point x ´ ,d can be found from the equation
)

22 234 1y´ d s27 1qh y´d dy1yh b . 7Ž . Ž . Ž .Ž .
)) )

Then one gets the moving layer thickness at the position of the plunging point from

1y´ j s1qh y´d . 8Ž . Ž .1) )

The upper regime boundary can be found from the condition j Gj .1) 1c

It is obvious that the depth profile under the motionless denser fluid layer does not
have any influence on the lighter fluid motion. Therefore we would expect that, for

2 3 2 Ž 2 .regime 5, the discharge Q s8z gb r 27´ and the thickness of the lighter fluid layer1 ` 0
Ž . Ž .h at xGx are the same as for a contraction alone. If we take b x and Hqh x1 ) c c

Ž .instead of b and H in Eq. 2b then for regimes 6 and 7 the discharge coefficient q0 1

will be identical to that for pure contraction.
The last three rows of Table 1 present j and j and the discharge coefficients q1c 2 c 1

and q as functions of ´ and d for regimes 5–7.2

3. Two-layer exchange flow

The solution for regime 4 will be obtained in this section from the Bernoulli and
continuity equations and the requirement that the thickness of the layers h and h1 2

continuously decrease from their maximum values to 0.

3.1. Arbitrary channel geometry

If the level of the lighter fluid is only slightly higher than the level of the heavier
fluid, so that 0-d-d , then two-directional exchange flow occurs. The Bernoulli and

)

continuity equations for the upper layer are

u2 s2 gz , 9Ž .1

u h bsQ , 10Ž .1 1 1

and for the lower layer are

u2 s2 g zyz q´h , 11Ž . Ž .2 ` 1

u h bsQ . 12Ž .2 2 2

We also have from the definition of the free surface displacement z that

h qh qzsH qh x . 13Ž . Ž .1 2 1
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Ž . Ž .To obtain Eqs. 9 and 11 we have used the boundary conditions

u ™0, z™0 at x™y`, 14Ž .1

u ™0, z™z , h ™0 at x™`. 15Ž .2 ` 1

Ž .We already have the solution for ds0 and dsd see regimes 3 and 5 in Table 1 .
)

Even before solving the exchange problem we see that when d increases from 0 to d
)

3r2 3r2' 'then q increases from 0 to 2d r 27 and q decreases from 2w r 27 to 0. For1 ) 2 q
some purposes it can be sufficient to take q and q simply as linear functions of d for1 2

the exchange regime. It will be shown that to find the exact solution one must solve the
Ž . Ž .system of two algebraic equations, which contain h x , b x and their derivatives.

Ž .Using non-dimensional variables introduced in Section 2 one can rewrite the system
Ž . Ž .Eqs. 9 – 13 in the following form

Õ2 sj , 16Ž .1

Õ j bsq , 17Ž .1 1 1

Õ2 sjydqj , 18Ž .2 1

Õ j bsq , 19Ž .2 2 2

j qj q´js1qh. 20Ž .1 2

Ž . Ž .For a given channel geometry b x and h x , density difference ratio ´ and lighter
Ž .and denser reservoir levels H and H dsz r´ H, z sH yH , the system of five1 2 ` ` 1 2

Ž . Ž . Ž . Ž . Ž . Ž .equations Eqs. 16 – 20 contains five unknown functions j x , j x , j x , Õ x1 2 1
Ž .and Õ x and two unknown discharge coefficients q and q . The discharge coeffi-2 1 2

cients q and q can be found using the condition that j and j are bounded1 2 1 x 2 x

functions.
Ž .From Eq. 20 and the boundary conditions we have

0Fj Fj y` s1qh y` and 0Fj Fj ` s 1y´d 1qh ` .Ž . Ž . Ž . Ž . Ž .Ž .1 1 2 2

Ž . Ž .It follows from Eqs. 16 and 18 that Õ sÕ at the point xsx where j sd and1 2 u 1

'0FÕ F d sÕ ` , 0FÕ F`.Ž .1 1 2

Ž . Ž . Ž . Ž .In the Boussinesq approximation ´s0 we have from Eqs. 17 , 19 and 20

q sq rq s 1yd rdqh x rd .Ž . Ž .r 2 1 u

Ž .Thus, q )q for d-1r2. For a contraction alone h'0 so q s 1yd rd .2 1 r
Ž .Therefore, for given d , the value of q d for a contraction alone is always smaller thanr

for any other geometry.
Ž .The parameter ´ is present only in Eq. 20 . Therefore, the Boussinesq approxima-

Ž . Ž .tion ´s0 and the rigid lid approximation j qj s1qh are equivalent for1 2

exchange flow.
Ž . Ž .Eliminating Õ , Õ and j from the system Eqs. 16 – 20 one gets1 2

h qh q´ q2rh2 sw x 21Ž . Ž .1 2 1 1

2r3 2 2 2 2db x qq rh sh qq rh 22Ž . Ž .2 2 1 1 1
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Ž .One can call Eq. 22 the specific energy equation of an exchange flow. For q s0 Eq.2
Ž . Ž . Ž .22 gives Eq. 6b . The interpretation of the Eq. 21 is geometrical and is especially

Ž .clear in the Boussinesq approximation when this equation takes the form h qh sw x .1 2
Ž . Ž .We are looking for a continuous solution of the system Eqs. 21 and 22 with

conditions

h ™`, h ™0 at x™y`, 23Ž .1 2

h ™0, h ™` at x™`. 24Ž .1 2

Ž . Ž .It is readily seen from Eqs. 21 – 24 that

1r21y´d 1yd q sd q ,Ž . Ž . 1 2

Ž .in the case of a contraction alone h'0 and

322 q s 2dr3Ž .1

Ž .in the case of a sill alone b'b . Then from the condition that h continuously0 1
Ž . Ž .decreases from ` to 0 one gets analytical expressions for q ´ ,d and q ´ ,d which do1 2

Ž . Ž .not depend on the behavior of b x or h x . When both width and depth vary along a
Ž . Ž .channel, it is more difficult to find q ´ ,d and q ´ ,d such that the solution of the1 2

Ž . Ž . Ž . Ž . Ž . Ž .system Eqs. 21 and 22 , h x and h x , satisfies the conditions Eqs. 23 and 24 .1 2

The rest of the paper deals with this problem.
Ž . Ž . Ž Ž . Ž . Ž ..From Eqs. 21 and 22 one can find compare with 10c and 10d in Armi 1986

D x h syR x 25Ž . Ž . Ž .1 x

and

D x h sP x . 26Ž . Ž . Ž .2 x

Here

D x sF qF y´ F F y1, 27Ž . Ž .1 2 1 2

2r3R x sd b yF w , 28Ž . Ž .Ž . 2 xx

P x s 1y´ F R x yD x w , 29Ž . Ž . Ž . Ž . Ž .1 x

and

F x s2 q2rh3 x js1,2 30Ž . Ž . Ž . Ž .j j j

is the ‘kinetic flow factor’ which is ‘‘twice the ratio of the kinetic energy head to the
Ž . Ž .potential energy head’’ Bakhmeteff, 1932, p. 64 . As x increases from y` to `, F x1

Ž .increases from 0 to ` and F x diminishes from ` to 0. Recent authors used the2
2 Ž Ž .notation FsFr , where Fr is called the local Froude number Baines 1995 , p. 38 and

. Ž . Ž .Section 1.4 . Fig. 2 shows the qualitative behavior of the functions F x , w x and2 x
Ž . Ž .b2r3 in the case x )0. One can see that for d)0 the function R x is positive asx b

Ž . Ž . Ž .x™"` but R x -0 and R x -0. Thus the function R x has at least two zerosb q

R x sR x s0. 31Ž . Ž . Ž .1 2
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Ž . ŽFor simplicity suppose that the equation R x s0 has exactly two roots x and x Fig.1 2
. Ž . Ž . Ž .3 . In this case one can see from Eq. 25 that D x -0 in the interval x , x . It is1 2

clear that

x Fx -x Fx . 32Ž .1 q b 2

The requirement that h is a bounded function leads to the condition1 x

D x sD x s0. 33Ž . Ž . Ž .1 2

Ž . Ž . Ž . Ž .Eqs. 31 and 33 correspond ‘the regularity conditions’ 13a and 13c in Armi
Ž . Ž . Ž .1986 . Putting xsx and xsx into Eqs. 21 and 22 we have together with the1 2

Ž . Ž .four Eqs. 31 and 33 the system of eight equations for eight unknown values

x , q , q , h sh x and h sh x , is1,2. 34Ž . Ž . Ž .i 1 2 1 i 1 i 2 i 2 i

This system can be written in the form

2r3
d b sF w , 35Ž .Ž . 2 i x ix i

F qF y´ F F s1, 36Ž .1 i 2 i 1 i 2 i

j 1qF r2 sdqj F r2, 37Ž . Ž .1 i 1 i 2 i 2 i

j 1q´ F r2 qj s1qh x , 38Ž . Ž . Ž .1 i 1 i 2 i i

2r3Ž 2r3Ž .where j sh rb x , j sh rb x and1 i 1 i i 2 i 2 i i

F s2 q2rh3 , F s2 q2rh3 . 39Ž .1 i 1 1 i 2 i 2 2 i

Ž . Ž .Armi 1986 called the left side of Eq. 36 ‘the composite Froude number’.
Ž . Ž . Ž .The system Eqs. 35 – 38 gives us eight equations for eight unknowns Eq. 34 and

Ž . Ž . Ž Ž .can be reduced to the system of two equations for x ´ ,d and x ´ ,d see Eqs. A61 2
Ž . . Ž .and A7 in Appendix A . In the Boussinesq approximation ´s0 this system can be

Ž Ž . .reduced to one equation which connects x and x see Eq. B1 in Appendix B . Some1 2
Ž .authors took x s0 and x sx and ignored two Eq. 35 . In some particular cases1 2 b

Žsuch an approach gives the solution e.g., the solution shown in Fig. 8 by Helfrich,
.1995 which differs slightly from the exact one.

Ž .If the free surface is a horizontal plane ds0 then x s` and x sx . The form2 1 q
of the interface in the case ds0 is the same as the form of the free surface for one layer
flow. For ds0 we have

32 3q s0, h s0, F s1, x sx , x s`, 2 q sh s 2w x r3 . 40Ž . Ž .Ž .1 12 21 1 q 2 2 21 q

Ž .It should be remembered that xsx is the location where the function w x has aq
minimum.

If dsd we have
)

32 3q s0, h s0, F s0, x sx , x sx , 2 q sh s 2d r3 . 41Ž . Ž .2 21 22 1 ) 2 b 1 12 )
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Ž . Ž .The values x and d can be found from Eqs. A10 and A11 , which in the
) )

Boussinesq approximation take the form

323b h b 1qh s 2b 1qh r3qbh ,Ž . Ž .x x xx

2 32 2b 1qh d s b 1qh .Ž . Ž .
)x x

Ž . Ž .For example, for geometry considered by Helfrich 1995 , p. 365

22 2bs4y3rexp a xy1 , hs tanh b x at x-0Ž .Ž .
one can find for bs3.75

a 0.01 0.02 0.1 0.637 1 4
d f1.48 f1.46 f1.3 f1.04 f1.02 f1.01

)

and x is close to 0. For as0.637 and bs0.01 we get d f1.01 and x fy2.32.
) ) )

Generally, when d increases from 0 to d , x decreases from x )0 to x -0 and
) 1 q )

Ž . Ž .x decreases from ` to x )0. The typical behavior of the functions x d and x d is2 b 1 2

shown in Fig. 4.

Fig. 4. The position of the critical points x and x vs. the parameter d for x )0. At these points1 2 b

F q F y´ F F s1.1 2 1 2
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Fig. 5. Graphs of maximum d for which the exchange regime exists, d , and upper layer thickness at the
)

2 Ž .narrows h for d sd vs. a for channel geometry given by Eq. 42 .10 ) )

3.2. The channel depth is a linear function of the channel width to the 2r3 power

Ž .Using the Boussinesq approximation ´s0 let us consider a particular case when
Žthe channel depth is a linear function of the channel width to the 2r3 power the general

.case when the minima in channel depth and width coincide is discussed in Appendix C
2r3 2h x s b x y1 ra 42Ž . Ž . Ž .Ž .

Here b is an arbitrary function of x and a is an arbitrary constant. The specific energy
Ž .Eq. 22 takes the form

2 2 2 2 2(ad h qh ql yl qq rh sh qq rh 43Ž .ž /1 2 2 2 1 1 1

where 2lsay1ra. The channel geometry is represented in the specific energy Eq.
Ž . 243 only by the parameter a . Therefore the discharge coefficients q and q depend on1 2

2 Ž .d and a but do not depend on a particular form of the channel width b x . From Eqs.
Ž . Ž . Ž Ž . Ž ..35 – 39 one can get see Eqs. C5 and C6

2 3 3 2(2 q sh 1q2dy3h sh 1y0.5adr h qh ql , 44Ž . Ž .ž /1 10 10 12 12 22

32 3 2(2 q s 1yh 3h y2d s0.5h adr h qh ql . 45Ž . Ž . Ž .2 10 10 22 12 22

Ž .These equations together with Eq. 37 written in the form

2 2(3h s2 ad ylq 1.25 h qh ql r h qh ql 46Ž . Ž .Ž .12 12 22 12 22

Ž . Ž . Ž .give us a complete system to find h a,d , h a,d and h a,d . The system Eqs.10 12 22
Ž . Ž .44 – 46 can be reduced to one equation

3 3 32ds1.6 a y1 r a ybŽ . Ž .

=
2 2 2 3 2(alqaq alqa q1.25a l qab raŽ . Ž .

3 3 3 3 2 3s a y1 r a yb yb q 3bq2.4l q0.6 albŽ . Ž . Ž .
3 2 2r 0.6 alqa y a y1 r a qabqb 47Ž Ž . Ž . Ž .Ž .
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Ž . Ž .Fig. 6. Graphs of a upper layer thickness at the narrows j , b velocities of the lighter and denser fluids at10
Ž .the narrows Õ and Õ and c non-dimensional discharges q and q against d for channel geometry given10 20 1 2

Ž . 2 Ž . 2 Ž . 2 Ž .by Eq. 42 with a s0 heavy solid lines , a s1 dashed lines and a s` solid lines .
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which connects ash rh and bsh rh . Varying a from 0 to a one can12 10 22 20 )

Ž .calculate b and d from Eq. 47 , h from10

23 3 3 2ayb h s 0.5ad a yb r a y1 ybylŽ . Ž .Ž .Ž .10

Ž . Ž .and q and q from Eqs. 44 and 45 .1 2

If dsd we have the solution in parametric form
)

4r32a s1y 1y5F)r3 1yF)r3 r 1yF) ,Ž . Ž . Ž .
4r32d s F)ra 1yF)r3 r 1yF) ,Ž . Ž .Ž .

)

1r32 3h s2d r3, 2 q sh , q s0 and a s1r 1yF) .Ž .10 ) ) 1 10 ) 2 )

Ž 2 . Ž 2 .The parameter F varies from 0 to 1. Fig. 5 shows the behavior of d a and h a
) ) 10 )

depending on geometry.
Ž .If dsd asbs1 the solution has the simple form0

d s1.5 a2 q1 r 3a2 q1 , 2h s 3a2 q2 r 3a2 q1 ,Ž . Ž . Ž . Ž .0 10

42 4 2 8 22 q sh , 2 q sa r 2 a q2r3 .Ž .1 10 2

Ž . Ž . 2These formulas are the particular case of Eqs. C13 and C14 with dhrdb2r3 s1ra .
Small a2 corresponds to a geometry for which the channel width stays almost

Ž . 2constant while the depth changes significantly sill-like channel . When a ™0 we have
the same solution as for a sill. Large a2 corresponds to a geometry for which the

Žchannel depth stays almost constant while the width changes significantly contraction-
. 2like channel . When a ™` we have the same solution as for flow through a

contraction.
Ž . Ž . Ž . Ž . Ž . Ž . 2Fig. 6 a–c shows graphs of j d , Õ d , Õ d , q d and q d for a s0, 110 10 20 1 2

and ` for the exchange regime. The range of the parameter d for which the exchange
2 Ž .1r3 2regime takes place for a s1 is 0-d-0.98 2.5 . With increasing a the

Ž . Ž 2 . Ž Ž 2 .lighter denser fluid thickness at the smallest section j d ,a j d ,a s1y10 20

Fig. 7. Graphs of nondimensional discharges q and q against nondimensional upper layer thickness at the1 2
Ž . 2 Ž . 2 Ž .narrows j for channel geometry given by Eq. 42 with a s0 solid lines , a s1 dashed lines and10

2 Ž .a s` heavy solid lines .
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Ž 2 .. Ž . Ž .j d ,a decreases increases and the lighter denser fluid velocity at this section10
Ž 2 . Ž Ž 2 .. Ž . Ž 2 . Ž 2 .Õ d ,a Õ d ,a increases decreases . The behavior of q d ,a and q d ,a is10 20 1 2

Ž . Ž . Ž . Ž .more complicated. For smaller d we see that q d ,` )q d ,1 )q d ,0 and q d ,01 1 1 2
Ž . Ž . Ž . Ž . Ž . Ž .)q d ,` )q d ,1 ; for larger d we have q d ,1 )q d ,` )q d ,0 and q d ,0 )2 2 1 1 1 2

Ž . Ž . 2q d ,1 )q d ,` . For a )1 and d-1 the increase in j compensates for a decrease2 2 10

in Õ so that their product q stays almost the same. For a2 )1 and d-0.7 the10 1

increase of Õ compensates for the decrease of j so that their product q stays20 20 2

almost the same.
Fig. 7 shows graphs of q2 and q2 vs. j for a2 s0, 1 and `.1 2 10

4. Discussion

The condition that the layer thicknesses continuously decrease from ` to 0 provides a
Ž . Ž . Ž Ž . Ž ..unique solution. Eqs. 31 and 33 or in another form Eqs. 35 and 36 are

Ž . Ž .mathematical expressions of this condition. To find q ´ ,d and q ´ ,d for any given1 2
Ž . Ž . Ž .geometry hsh b one can solve the system Eqs. 35 – 38 . Note that the system Eqs.

Ž . Ž . Ž . Ž . Ž Ž ..35 – 38 contains not only h x and b x but dhrdb as well see Eq. 35 . Therefore,
for given ´ and d , the discharge coefficients q and q depend on values of the1 2

Ž . Ž . Ž . Ž .functions h x , b x and dhrdb at the points x ´ ,d and x ´ ,d . We reduced the1 2
Ž . Ž . Ž . Ž .system of eight Eqs. 35 – 38 to the system of two equations Eqs. A6 and A7 for x1

and x . This system contains only the parameters ´ and d and the functions which are2

fully determined by the channel geometry.
Ž . Ž . Ž .The maximum value of q ´ ,d at ds0 is w x times larger than the corre-2 q

Ž . Ž .sponding value of q ´ ,d at ds0 for a sill or a contraction alone; the values of2
Ž .q ´ ,d at ds0 and at dsd are the same for both the contraction and the combined1 )

Ž .case but q ´ , d is different for 0-d-d . The discharge Q reaches 0 at ds1 for a1 ) 2

contraction, at dsd when both depth and width vary along the channel and at ds1.5
)

Ž . Ž .for a sill. If b x and h x have a minimum at the same location then x s0 andq
Ž .w x s1.q

Ž .The solution obtained for the channel geometry Eq. 42 shows the relative effects of
the changes of the channel width and depth. The parameter a2 shows how fast the depth
changes compared with changes in the width, a2 sdb2r3rdh. For a geometry for which

Ž 2 .the depth changes faster compared with changes in the width a decreasing :
Ž .a larger relative reservoir level difference with the same ´ is required to arrest the

Ž Ž . .denser fluid see the graph d a on Fig. 5 ;
)

the velocity increases and the thickness of the denser fluid decreases at the narrowest
Ž .cross-section, j s1yj , Fig. 6a and b ;20 10

the value of d , for which Q sQ sQ , increases and the value of Q decreases1 2 s s
Ž .see Figs. 6 and 7 .

Ž .In the quasi-steady approximation the volume exchange VsH Q yQ d t and the1 2
Ž .mass exchange MsH r Q yr Q d t do not depend on channel geometry for the2 2 1 1

flow through a contraction alone or over a sill alone. In contrast V and M are different
Ž . Ž . Ž .for channels with different h b at x)x even if ´ t and d t are the same. The

)

theory developed in this paper allows us to predict changes of the volume exchange V



( )A. Odulo, J.C. SwansonrDynamics of Atmospheres and Oceans 28 1998 39–6158

and the mass exchange M as a result of the changes of channel geometry, fluid densities
and reservoirs levels.

If the relative density difference ´ is small, the existence of an exchange flow and
the solution depend only on the ratio of the relative reservoir level difference g to the

Ž .relative density difference ´ , dsgr´ , not on the parameters ´s 1yr rr and1 2
Ž . Ž .gs 1yH rH themselves. The Boussinesq or rigid-lid approximation can be used.2 1

Many features of real exchange flows were neglected in this paper. We found the
discharge coefficients q and q for steady flow using a simple model which does not1 2

include effects such as friction, mixing, decreasing channel width with depth, etc. To
take into account effects of friction andror decreasing channel width with depth on the
discharges, correction coefficients can be introduced. Friction and mixing will change
the position of the plunge point and will have a strong influence on the layer thickness

Ž .where it becomes very small see for example Brandt et al., 1996, Fig. 4 , but this
influence will not affect the discharge.
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Appendix A

Ž . Ž .To solve the system Eqs. 35 – 38 it is convenient to introduce the functiins

2r3 2r3
F x s b rw and V x swFq2b A1Ž . Ž . Ž .Ž . xx

Ž . Ž . Ž . Ž .and denote F sF x and F sV x . Then functions F x and V x depend onlyi i i i
Ž . Ž .on geometry. From Eqs. 35 – 38 we can express q , q , h and h in terms of x :1 2 1 i 2 i i

F sdF , A2Ž .2 i i

F s 1ydF r 1y´dF , A3Ž . Ž . Ž .1 i i i

3h sdV r 1q´ F F r2 , A4Ž . Ž .1 i i 1 i 2 i

h s w ydV r3 1q´ F r2 r 1q´ F F r2 . A5Ž . Ž . Ž . . Ž .2 i i i 1 i 1 i 2 i

Ž . Ž . Ž . Ž . Ž .Substituting Eqs. A2 , A3 , A4 and A5 into Eq. 39 we get two equations to find
Ž .x ´ ,di

322 q r dr3 sG x sG x , A6Ž . Ž . Ž . Ž .1 1 2

2 q2rd sP x sP x , A7Ž . Ž . Ž .2 1 2
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where
33G x s 1ydF V x r 1y´dF 1q´ F F r2 , A8Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 2

3
P x sF wy dr3 V x 1q´ F r 1q´ F F r2 . A9Ž . Ž . Ž . Ž . Ž . Ž .1 1 2

Ž . Ž . Ž .For any d in the interval 0, d one can calculate x and x from Eqs. A6 and A7 .
) 1 2

The values x and d can be found from
) )

d V x 2q´ 1yd F s6w , A10Ž . Ž . Ž .
) ) ) ) )

V 3 x 1yd V s8 1y´d F . A11Ž . Ž . Ž . Ž .
) ) ) ) )

It can be shown, that when d increases from 0 to d , x decreases from x )0 to
) 1 q

Ž .x -0 and x decreases from ` to x )0 see Fig. 4 .
) 2 b

Ž . Ž . Ž .When x s0 we have from Eqs. 35 – 38 and 211

F sd , 1y´d F s1yd , j sd 1y´j 0 ,Ž . Ž .Ž .21 11 11

j s 1yd 1y´j 0 ,Ž . Ž .Ž .21

j 0 sd 1yd r 2y´d 1qd .Ž . Ž . Ž .Ž .
Ž . Ž .Then we can find corresponding values of d and x from Eqs. A6 and A72

322 32 q rd sb 0 1yd 1y´j 0 r 1y´d sG x r27,Ž . Ž . Ž . Ž . Ž .Ž .1 2
A12Ž .

33222 q rdsb 0 1yd 1y´j 0 r 1y´d P x .Ž . Ž . Ž . Ž . Ž .Ž .2 2

Ž .In the Boussinesq approximation ´s0 we have from these equations an explicit
Ž .expression for d x and the equation to calculate x2 2

2 3 2 3ds b 0 yV x r27 r b 0 yF x V x r27Ž . Ž . Ž Ž . Ž . Ž .Ž .2 2 2

1r3 1r32 2s b 0 rF x yw x r b 0 rF x yV x r3Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .2 2 2 2ž / ž /

Appendix B

Ž . Ž . Ž .In the Boussinesq approximation ´s0 the system Eqs. A6 and A7 can be
reduced to one equation

3 C x yC x L2 x qL x L x qL2 x sV 3 x yV 3 xŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .2 1 2 2 1 1 2 1

B1Ž .
3Ž . 3 3Ž . 3which connects x and x . Here C x sFw and L x sFV . The corresponding1 2

value of d is

ds V 3 x yV 3 x r L3 x yL3 x . B2Ž . Ž . Ž . Ž . Ž .Ž . Ž .2 1 2 1

The value of x can be found from
)

2r32V x 3b x yV x s4 B3Ž . Ž . Ž . Ž .Ž .
) ) )
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and d is
)

d s3w rV B4Ž .
) ) )

Ž . Ž .It follows from Eqs. B3 and B4 that 1Fd F1.5.
)

Ž . Ž . Ž .For a given profile h x and b x one can calculate x x , taking x from the2 1 1
w x Ž .interval x , x and then calculating x from Eq. B1 . Then one can calculate d from

) q 2
Ž . Ž . Ž .Eq. B2 and q and q from Eqs. A6 and A7 .1 2

Appendix C

Let us consider now the case when the depth and width of the channel have minima
Ž . Ž . Ž .at the same location x s0 . From Eqs. 25 and 26 one can see thatb

D 0 s0 C1Ž . Ž .
Ž . Ž . Ž .Eq. C1 together with Eqs. 37 and 38 at xs0 give

F 1y´ F s1yF C2Ž . Ž .10 20 20

3h 1q´ F F r2 s2dqF C3Ž . Ž .10 10 20 20

h 1q´ F r2 qh s1 C4Ž . Ž .10 10 20

Ž . Ž .Now Eqs. A6 and A7 take the form

2 q2 sh3 1yF sh3 1ydF C5Ž . Ž . Ž .1 10 20 10 2

2 q2 sh2 F sh3 dF C6Ž .2 20 20 20 3

Ž . Ž . Ž . Ž . Ž .We now have the complete system Eqs. C2 , C3 , C4 , C5 and C6 to find the five
unknown values F , F , h , h and x .10 20 10 20 2

Ž . Ž .Using the Boussinesq approximation ´s0 we can reduce the system Eqs. C2 ,
Ž . Ž . Ž . Ž .C3 , C4 , C5 and C6 to one equation for x2

3F w yb r 2qb 3F s a 3 y1 r a 2 qabqb 2 C7Ž . Ž . Ž .Ž .Ž .2 2 2

where the parameter bsh rh decreases from ` to 0 when d increases from 0 to d .22 20 )

We also introduced

ash rh sV r 2qb 3F . C8Ž .Ž .12 10 2 2

The corresponding value of d is

F ds a 3 y1 r a 3 yb 3 C9Ž . Ž .Ž .2

If ds0 we have
32 2x s`, h s0, h s1r3, q s0, 2 q sh s 2r3 C10Ž . Ž .2 12 10 1 2 20

If dsd we have
)

32 3x sx F0, h s0, q s0, 2 q sh s 2d r3 C11Ž . Ž .2 ) 22 2 1 10 )

Ž . Ž .The value of x can be found from Eq. B3 and d from Eq. B4 .
) )
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When d increases from 0 to d , there is a value of d for which asbs1
) 0

Ž . Ž .h sh , h sh . We can get one more equation from the condition D 0 s012 10 22 20 x

F qh s1 C12Ž .20 10

to obtain the complete solution

d s1.5r 1q2F , h s 1qF r2 r 1q2F ,Ž . Ž . Ž .0 0 10 0 0
C13Ž .2 2F s1.5F r 1q2F , q sh , q sF .Ž .20 0 0 1 10 2 20

Note that

1 0
2r30-a -1F s , when lim dhrdb s C14Ž .y1q1raŽ .00 0½x™0

`0

One can see that h sh and q sq only if dhrdb2r3 s0 at xs0. Varying b from10 20 1 2
Ž . Ž .0 to ` one can calculate x from Eq. C7 , d from Eq. C9 and then q and q from2 1 2

Ž . Ž .Eqs. C5 and C6 .
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