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ABSTRACT

The nonlinear motions in an incompressible stratified fluid with a
free surface are considered: New functions  are introduced which are
associated with corresponding functions on the isopycnal surfaces.
Simplification of the system of equations. and the domain of definition is
achieved with these new functions. Many new results are obtained using
this system. No approximations are used in the development, but a
limitation is placed on the class of allowed motions to those for which the
isopycnal surfaces are single valued.

The general results are applied to obtain exact. relations between
integral properties of periodic gravity waves of finite amplitude and to
obtain approximate equations for the large horizontal scale motion of a
stratified fluid. ' ‘



INTRODUCTION

description of the motion physical quantities are regarded as

functions - of position x andAﬁime t Alternatively, the fluid elements can
be identified by their position a at some initial instant ty, and the
motion specified by the subsequent position and velocity of these fluid

elements This is a Lagrangian specification of the motion, the

independent variables being the initial co-ordinates a and the elapsed time
t-to

We introduce a new specification of the motion, the independent

variables being the position x and time t as in an Eulerian description,

but the dependent functions associate with corresponding physical
quantities on the isopycnal surfaces

Zakharov (1968) introduced the surface potential for irrotational
motion of a homogeneous incompressible, inviscid fluid ©®S5(x,y,t,
®(x,y,50(x,y,t),t)) where z = (o(x,y,t) denotes the free surface, and
showed that &S and §o are canonical wvariables Ostrovsky (1978)
introduced the vertical displacement of isopycnal surfaces ((x,y,z,t) in a
study of weakly nonlinear internal waves Odulo (1979) showed that an
analogous function ¢(x,y,z,t) can be introduced for homogeneous fluid.

In this paper we consider the motion of a stratified incompressible
fluid (§ 1.1)

In § 1.2 we introduce new functions, which are associated with

corresponding functions on the isopycnal surfaces  For these new functions
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the system of equations -and the domain of definition are simpler The co-

conservation laws In § 1.4 we derive the vorticity conservation law and
obtain .an infinite number of .¢conservation.laws, which are generalizations
of well known conservation laws in two-dimensional hydrodynamics (Arnol’'d

978) Folldwing,Serrin;(1959) we_int;qduce the.Clgbsch :epreséntatiqn of
the velocity and give‘the variational principle (§ 1.5) (Benjamin ‘& Olver

982; Henvey 1983; Luke, 1967 Salmon, 1988; Seliger & Whitham, 1968) In
the particular case of ‘"potential" motion, it is possible to give the
Hamiltonian formulation of the problem (§ 1.6) (see also Voronmovich, 1979
Milder, 1982) In § 1.7 Hamilton's principle for the homogeneous
irrotational fluid is noted (Miles 1977)

To illustrate the possibilities of the new system we consider in
Chapter 2 the case of two-dimensional motions In § 2.1 we rewrite the
system in simpler form and show that the problem can be reduced to one
equation of this one unknown function. In § 2.2 integral relations between
depth-average values are given. Simpler results are obtained in the case
of the steady motion (§ 2.4) In Tables 1 and 2 integral relations are
listed in detail for periodic gravity irrotational waves in homogeneous
fluid In Tables 3 and 4 similar integral relations are listed for
solitary irrotational waves (Starr, 1947a,b; Lonquet-Higgins, 1973, 1974
1975, 1980, 1984, 1988 Yu & Wu, 1987)

Using the new functions obtained in § 1.2, one can readily obtain
approximate equations describing non-linear motions with large horizontal
scale In § 3.1 the problem is introduced in dimensionless form. The

system describing long gently sloping waves is noted in § 3.2 The
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particular cases of homogeneous fluid of variable depth and stratified

cases z-independent equations are obtained Analogous results are obtained
for waves in a two-layer fluid of variable depth (§ 3.2.3 and for large

scale eddies on a “B-plane" (§ 3.3)

CHAPTER 1 GENERAL THEORY

1.1 Governing equations

We will consider a layer of ideal incompressible fluid, rotating
around a vertical axis z with angular velocity /2 We assume that in the
undisturbed fluid density po(z) increases with depth. The fluid is bounded
above by a free surface (at z = H + ;o(x,y;t)) and below by a rigid bottom

z = h(x,y) (hg =2 0, hy'z.O)

The motion of a fluid is described by

D*G+nxu+p-lv3p+g=o, (1.1)

V. -u =0, 1.2

g " U (1.2)

D*p = 0 (1.3.
with the boundary conditions

w=u Vh at z = h(x,y

w=D%,, p=20 at z = H + {o(X,y,t) (1.5)

and with corresponding initial conditions and boundary conditions

respect to x and y
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Here u = (u v w 1is the velocity vector p the density p the pressure

g the gravitational acceleratior

_ page 3
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1.2 New Functions and Transformed Governing Equations

We will consider only those motions, for which the equations of.
isopycnal surfaces are single valued functions of x and y for all t. Then
we can introduce a new function ¢{(x,y,z,t), representing a wvertical

displacement of the isopycnal surfaces (see Figure 1)
pP(R,¥,2 + §(x,¥,2,t),t) = po(2) (L.7.

In the case of a homogeneous fluid the function §(x,y,z,t)-is defined

by the equation

W(X,}’yz + Q’(x,y,z,t),t) = gt + u(X,yyz + g:t) ¢ gx +

(1.8)
+ v(x,y,z + g,t)-gy
We also introduce new functions (see Figure 1)
u(x,y,z,t) = u(x,y,z + ¢(x,y,2,t),t)
v(x,y,z,t) = v(x.y.z + ¢{(x,y,z,t),t)
w(x,y,z,t) = w(x,y,z + ((x,y,z,t),t) (1.9)
Pp(x,y,2z,t) = p(x,y,2 + ¢(x,y,2,t),t)

R(x,y,z,t) = p(x,y,2 + ¢(x,y,2,t),t)
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X,Y,z. 1is equal to the value of the corresponding old function at the point
with the same x and y on the isopycnal surface which passed through point
X,¥,2z in the undisturbed state

It is important to understand that independent variables stay the
same But the domain of definition of the new functions: is simpler For
the old functions the domain of definition is (see Figure 2)

-0 < X < Xg ,- @<y <o hix,y <z <H+ ¢o(x,y,t) (1.10)

and for the new functions it 1is

©<X<K(y,0), - @<y <w h¥xy,t) <z <H, (1.11)

here h* and x are defined by the following equations

+ E 3 * %
h (x,y,t) = h(x,y, - ¢{(x,y,h (x,y,£),t) h (x (y,t), y,t) = H (1.12)
* * <
If h < H then X, = It is clear if h = 0 (flat bottom) them h =0

and the domain of new functions is a layer of constant thickness
It is easy to obtain relations between derivatives of new and old
functions

Ry = px + Cx pz Rz = (L + ¢3)p, and so on. (1.13;
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Figure 1 Undisturbed isopycnal surface (solid line) and the same
isopycnal surface at time t (broken line).
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Equations 1.1)-¢(1.3) are satisfied .at any point in the fluid,

-

Therefore we car cnange z to z + {(x,y,z2.¢
Using (1.9), (1.13) we obtain from (1.1)-(1.5)

Du+Dw -V +1 VP+Oxg- 0,
, Po

(1 +¢z).Dw+ L p, 4+ N2 =0,
F s : :

Sze +V o [u (1 +¢;) =0,
w = D¢
From (1.7), (1.9) it follows, that

R (x,5,2,t) = polz)

Boundary conditions are

e = q4e+V (h(x,y) -¢) at z = h*(x,y,t_)

P ="gpol, ¢ = ¢o at z = H.
" . H-
Here u = {u,v,0}, N2 = —8Po /Po» P = Ppn + gpol — gfpodz:
D = 9 + u L + vV L
at ax ay

If we consider a homogeneous fluid, system (1.14)

in arguments

(1.

(1.

(1.
(1.

(1.

(1.

(1.

(1.

funcrions

14)

15)

16)
17)

18)

19)

20)

21)

(1.17) changes a

little equations (1.16), (1.17) stay the same, in (1.14) - (1.15) we take

po(z) = const (N2 = 0). Clearly (1.8) and (1.17) are the same.

The

problem (1.14) (1.20) is simpler than the problem (1.1)-(1.5) in the

following ways:
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‘The domain of. definition of the new functions is simpler  In ‘the
eai em dar
system in a simple fixed region.
2 Operator D 1.21 is simpler then D* (1.6) and equation (1.
contains no differentiation with respect to z
3 Function w is simply related to u Vv and by ¢(1.17)
4 Instead of a problem with six (u,v,w,p,p,{o) unknown functions we

have obtained a probiem with four (u,v,P,{) unknown functions

1.3 The Impulse and Energy Conservations Laws
let n =z + ¢ (1.22)
Henceforth in this chapter we will consider only the case h = 0 Using
(1.15 to eliminate Dw from 1.14) we get
nDu + L (n Py — nxPz 5 nxN2 — Qvng = 0
Po

_L_‘ (nzPy = nyPz) - CﬂyNz — Quny =0 (1.24°

Po

ngD

Multiplying equations (1.23),(1.24) and (1.15) by nunt-l nvn-1 and nwm-l
respectively, and then adding to each (1.16) multiplying by u? vI and wh

respectively we obtain

ang + 8n+ly + (v ap)y + n Zn-1 [E_(Pxﬂz“Pzﬂx)—szﬂx ] — Qvnap.1 = 0,

U¥ Po (1.25)
bne + bntly + (u bp)y + n bp-1 [E_(Pyﬂz_Pzﬂy)—szﬂy] + nlubp.] = 0,

Iz Po (1.26)
Cne + (ucp)yx + (Vv cn)y + n °n-1 [E_ P, + Nzg] =0, (1.27)

Nz Po

where ap = pg nz ull,by = po Nz VB, cn = po Mz wh,
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Integrating (1.25) (1.26 over z from O to H for n = 1 we obtain

Ix't+ SXX 4 sX @ bidz =0 (1.28
x v

H .
IY + s¥YX + 8¥Y  q [ ajdz =0 (1.29,
X Yy o

In the case @ = 0 these equations are impulse conservation laws.

Here
. B H
I = fponzudz , Iy = fponzvdz,
(o] (o]
= 0 2 1 22 1 2
S = [ [ng(Pou + P) — = p Nt Jdz — = gpo(H)C,
o 2 2
H ) 1 2 2 1 )
=J o v’ +P) - PN€T1dz — — gp (H)S
o 2 2
v H
S = {"poUVdZ

Adding (1.25)-(1.27) for n = 2, we obtain

Et +V . u"z(T + P) + (Pr;t)z =0 (1.30)

E = nZT+wi, 2T-p°(u2+vz+w2), i = 1/2 poN2§2
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Integrating (1,30) over z from 0 to H, and using boundary(conditions

E +F +F =0 €1.31
t X y
_ . H .
Here E = K + II" + I° K = Jn,Tdz
.0 '
H' oL
s 1 2
mt _ [ =dz, I' - . g po(H)E
o 2 .
L H H -
F' = [ un (T+P)dz, F = Jon_(T+P)dz
(o} ’ [o] :

It is important to note that the old functions do not.allOW'separation of
kinetic energy K and the baroclinic potential energy N1 But the

functions make this separation easy

1.4 The Vorticity Conservation Law

Now we will obtain an infinite number of conservation laws, which are
generalizations of well known conservation laws in two dimensional
hydrodynamics (Arnol’d, 1978).

We introduce the new functions

V= U,V W = py (u + w vsﬁ) (1.32)

From (1.14) - (1.15) we find after manipulation
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€|

Here w = {w, w, wy = €3x‘§ - vorticity. A = u !»G T P, E,é,(0,0,l)

By taking the curl of-(1.33) we can show that

n
r

- = = == "o 2 -
wet Vax{(w + pMxu + — T + p.N )k’ = 0. (1.3¢
t 3 o o

Po

The projection of (1.34 on the axis z has the form

wy + [u(q3+ pOQ) % + V(‘cq3_+ poﬂ)]y =0 (1.35
This equation is a law of conservation of the vertical component of vorticity

Using (1.16) we can obtain an infinite number of conservation laws

f)z@( —_— + V . unzcb( ‘—————-—————‘ =0 (1.36)

Tz T2

w, + poﬂ w. + 0o

Here © is an arbitrary function. We obtain conservation laws (1.34) (1.36)
at the expense of a limitation of the class of allowed motions The initial

system (1.1)-(1.3) does not have these conservation laws

1.5 Variational principal Clebsch representation

Henceforth, except Chapter 3, we will consider the case (=0. It is then

page 10



possible to introduce the. Clebsch representation (Seliger and Whitham

V= Vb AVan + XTgp (1.37)
where ¢, A, p and xy are new -unknown functions
Then the vector vorticity is
$3Ax$3p-+ $3xx€3po (1.38.
From (1.37) and (1.33) we have
GA'f DA « Vi + A o VDu + [Dx + T/po— g§]6p0= 0 (1.39)
where
A=D$ —T + P. (1.40)

By (1.37) we have introduced four functions (¢, A, u, x) in place of thre:
(u, v, w)

Therefore we can put
Dx + T/po — g =0 (1.41

Then from (1.38) we can find

A+ MDp = R(p,\,t) (1.42)
and

R) = Du, (1.43)

Ry = —DA. (1.44)

Where R is an arbitrary function, for which
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dR
dt. at

In (1.14 - (1.16) replacing u and w byl¢ A, @, x and 7§ we obtain

together with (1.40) (1.42) a system of five equations in five unknow

functions This system -follows from the variational principle

o H
s [If [ P($,X,p,x,n)n_dzdxdydt = 0 (1.46)
R )
Here
P=R+T-— D¢ — \Du (1.47)

In 1.46) X, u, n, x, ¢ are varied independently to give

Duy = RX (1.43)
DX =-1R (1.44,
7]
Dx + T/po — g¢ = 0, (1.41)
w = Dy (L.17)
+V(up =0 1.16)
M, "
1.6 "Potential" motions. Hamiltonian description
We can consider motions for which
R=Xx=p=20 (1.48)
We will call such motions "potential" In this case the problem is reduced

to the system
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ne=w=-u-Vy (1.50;

where the dependence of ¢ on x and n is defined by the problem
(w — u’?ﬂ)z + (Uﬂz-)x + (Vﬂz).y= 0 (1.51)

with boundary conditions

n =20 at z = 0, 1.52
pog — T =20 at z = H 1.53
We can rewrite the system (1.49) (1.50) in a canonical form
(Voronovich, 1979; Milder, 1982
§H §H
Xe  — Tt 1
on 6x
Here the Hamiltonian is
v - 1 22 1 )
i = ff {('IZT + E PON ¢ )dz + 5 gPO(H) fo ]axdy (1.55)

Note, that (1.51) can be written in the form

6H

6¢

7 Irrotational motions of homogeneous fluid

Now we add to the conditions (1.48)

po =1, x=0 (1.56)
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corresponding to an irrotational motion of homogeneous fluid,

rewritten in the form

¢Z

2 2
L(¢,77> = ——(1+§X +§y )—¢xnx‘¢y'7y +(¢an_¢z'ﬂx)X+‘(¢y’72-¢zny)y =0
n
z
¢z 2 2
r’t+¢xnx+¢'yr,y_"_ »(1+gx +§y ) = 0
. n
z .

boundary conditions

n=20 at z = 0
2
P P . ’: (L4t 40y +
+ — + - — (1+¢, + + gt =
t 2 X y 2 n 2 X y
z
Integrating by parts
o H
JJ [ é-1L (¢ n) dzdxdy = 0
-0 O
we obtain
> H ° 4, 9 9
2T = fo fﬂszZdXdy = ff{¢[_(1+§x +§y )_¢x§x—¢y§y
- 0O = nz
Using (1.58) we have
@
2T = [f én_ dxdy
z=
-

0 at z =H

dxdy
z=H

In this case

(1:57)

(1.58)

(1.59)

(1.60)

(1.61;

(1.62)

(1.63)

means that the kinetic energy of the entire fluid volume can be

expressed in terms of functions and their derivatives at the free surface

Also the potential energy can be expressed through ¢, as
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s rr 1.6

[N]
=1
]

Hence the Hamiltonian can. be expressed by means of the .functions and their

derivatives at the free surface

H=T+T° (1.65)
The equation (1.60) and the eéquation (1.58) at z = H can be written in
canonical form (Miles (1977))

§H §H
S (1.66)
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Chapter 2. TWO-DIMENSIONAL MOTIONS

2.1 Governing Equations and Reducing the System to one Equation.
In this chapter we will consider two-dimensional motion in a fluid of
constant - depth without rotation. In this case the problem (1.14) - 1.20

has the form

u +ouu o (wt + uwx) + _ Px =0, (2.1)

P

o

A 1 ol o
+3u Wx) + Pz + N¢ =0, (2.2)
o
+ (un ) =0, (2.3)
w = nt + unx, (2.4)
with boundary conditions

P = gpolo at z =H (2.5)
n =20 at z = 0 (2.6)

The -corresponding problem for functions V, n. P has the form

Loy, g Ay
Uy + — (U - W ————) +P], =0, (2.7)
2po 2
nZ
1 2 ﬂx 2
We + — [UW—-W — ], +P, + pN¢ =0, (2.8)
pO ﬂZ
+ [qu— Wﬂx‘x =0 (2.9
Wl +n%) =n(pn+Un) (2.10)
X z Yo't x7
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the ame boundar conditio

From 2.7 - (2.8) we can obtain
2 2
. 17 + w .
wy + Lw)“po(’- gl + ) )]Xéo

where vorticity w is given by’

w="U, = Wy = (gou)z + (ﬁonxw)z - Po (ﬂzw)X‘ (2.12)

Equation (2.11) is the y-component of (1.34) for the plane case witheut
rotation

We will say that an equation has the form of a conservation law, if it
has the form

Fr + & =0 (2.13)
It is clear that we can introduce a new function ¢

F = ¢y (2.14)
to obtain the expression

¢t + & = C(z,t). (2.15)
This means that value of ¢ + ® at time t is uniform on an isopycnal
surface

Equations (2.3) or (2.9), (2.7) and (2.11) have the form of (2.13) We
introduce the functions # and ¢

n —z=2_ =8, (2.16)

U = ¢y, (2.17)
to obtain from (2.3), (2.7) and (2.11) the following system

btz +.u (8xz + 1) = Q(z,t), (2.18)
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2

u® +w
¢zt ~ We uw — py (- g0 4 T a(z

~)

where functions Q and E can be determined from boundary conditions at x, and

Q(z,t) = Ez(z,t) (2.21)
It is'possible to reduce the system (2.1 (2.4, to an equation for the
function 6 Indeed we can express functions u, w and  in terms #4
n=fx +z (2.16;
Q-4
ue ——— (2.18)
1+ 86
XZ
bz ,
W o= fy¢ + Oxx (2.47)
T+ 4§
Xz

Substituting (2.12) (2.16), (2.18) and (2.4') into equation (2.1l we

obtain the equation for 4 (x,z,t)

2.2 Integral Relationships

The integral properties are of particular interest We will define

depth-averaged functions

dz (2.22)

\%

il
==l I
o~ T
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From system (2.1) - (2.4) we can obtain the following equations (n=0,1,2...)
(n™ nz)¢ nhn 2 no
(Po un® nz)e + (po U2 17 nz)x + (P n? nz)x — (P qP nx)z
~ po N2 ¢q ny = po uw. (nM), (2.24)
(po w n nz)e + (Po'UW % nz)x + 9t (Pz + po N2 ¢) = W2 ﬂn-l nz (2.25)
Integrating these gquatiQnS'withrrespect to'z from 0 to H, we obtain

the following equations (n = 1,2,3 )

<Po Mz>t + <po U Nz>x = 0 (2.26)

., + <unz>x; =0 (2.26")
t

</’0 '7n nz>t + <po u N nx>x = n <pp W P > (2.27)

<P np>e + <unl np>x = ne<w nlogg> (2.27°

<pounz>t + [<poulnz> + <Pnz> ~ g <pof{z>lx = 0 (2.28)

<Pountnz>e + [<pouZnfin,> + <PnDn,> + g(<polnTny>

~<pon™*1>/(n+1)) 15 = n<pouwyR-1y,> (2.29)
H< pownz>r + H<pouwny>y = Pg — g{o (2.30)
<pownny>¢ + <pouwnDny>y = (2.31)

= n[<powin-lp,> + <Pyfi-lp> — g<porn®-ln,>] — g <pontz>.

a
If we put — = 0 and @ = 0 in Equation (1.28), we obtain Equation
ay

(2.28) The energy conservation law (1.30) and (1.31) in this case

A
(— = 0) can be rewritten in the forms
dy
1 2.2 2 ey
' 2. u+ w .
2 [poﬂz(u +wo)—ge § — (po——;——~ + P)“ﬂz]x+(P"t)z =0 (2.32)
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Values of functions on the free surface we will denote as

f (x,H,t) = fg x,t) (2.34
and an the bottom as

f (x,0,t) = fp (x,t) (2.35)
From (2.1) - (2.10) we can obtain

Uge + Uy ————— +gp ), =0 (2.36,

ws - Sop * Us Soy (2.37)
Por, (ubt + u ubx).+ PbX =0 (2.38)
Po=0 2.39

It is useful to introduce a function

z
I(x,z,t) = funzdz (2.40)
o

From (2.3) we have
ne + Iy =0 (2.41)

and using (2.4) we obtain
w-umn —1. (2.42)

From (2.1) - (2.6), (2.11 and (2.12) we can obtain
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H <w> = US —'pOb up - H <pg W Ny>y, (2.43)

n-1
H <wn > = Ugng —H<p,wn n,>y—n<psun nz>, 2.44°
2 2
u, tw ;
‘ 1 2 s "s H 272 i
H <uw> = ug Ug— E PopUb —H<pouwnz>x— £ g g Tr———t E <pg (u +w )>: (2.45]
2 2 _ ,
<un,> Ug — <py(u + w )n,> — <p Iwn,>,. (2.46)

We can also aobtain the equation

n n oo+ oW J n-1

n

which gives the following integral relationships

2
u +w n n n-1

n
<wn >t + <uwn >X = < N Po - g <{n Po +

2.3 "Potential" motions
Consider motions for which velocity can be represented in the form

V =¢x, W=9¢z + xpo (2.49)

From (2.12) we have

© == X Po (2.50)
Hence from (2.11) we have
+ 2

Xotux, o+ -8 =0 (2.51;

2
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This- equation together with (2.9) and (2.10) gives us three equatiens

iree funct 1) dn see (

2.4 STEADY MOTIONS
2.4.1 Governing Equations
All equations become much simpler if we consider steady motions,
is, motions for which
f(x,2,t) = f(x—ct,z).or equivalently fy = — cfy (2.52)
and we can integrate all equations which have the form (2.13)

Indeed, we have from (2.1) (2.4)

2 2
: EHZEET_L_E_ + P = E(2) (2.53)
. 1 .
Q2)w, 4 — P, + N°C =0 (2.54
[o]
n,(u—c) = Q(z) (2.55
M,w = Q(z) ny. (2.56)

Equation (2.30) is the Bernoulli equation.

From (2.11) we have

)
(u—c)w — poNzg -5, " YO a) (2.57:
2
Where (see (2.21
(z) = E"(z) (2.58)

All variables in (2.57) may be readily expressed in terms of 5
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1+ ?
T x
P=E-Q pg—
.ﬂz
2.
'.|.+ryx
w =12 Q : — Po Q myy
Ny

Now from.(2.57) (or from (2.54)) we obtain an eguation for n:

2
1 +9

o] (o] 2
n 2 nz
X 4

We must solve this equation with the boundary conditions

2 2

+ gpog = E at z = H,

n =20 at z = 0,

and some boundary conditions in x.
2.4.2 Integral relationships

Rewrite Equations (2.22) - (2.24) for steady motion
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.61)

62)
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65)



c) n :J,_\: =w (5 )z (26

(2.66)
n -
Po n ’72
n. n 2 .'m n-1 2
Py (u - c) won, x.*-?z not e, N-¢n p T n, V_ (2.67)
Integrating over z from O to H we have (n = 1,2,
7o
<u ny> = ¢ — + Q, Qo= <Q(z)> (2.68)
n n n-1
U 7>y —— 1y §o T DWWy N> (2.69)
R bN
<p, (u - ¢ n,>=Q, Q =<p Q(2)> (2.70)
o - \
(u -c¢c g ﬂ:>x =n <po W nz> (2.71;
<p uln>-—c<p un>+<Pp>-g<p £C>=R (2.72)
~Po Ty o 127 Ty & < z o ’
u? pn> —c<p unPp>+ <P gt >
mn,> = e <p, umnn> noom,
(2.73)
n 1 a+l n-1
+ g <po [s N 1fg n > =mn <p, uwnp 77>
n+ 1
HQ (z) <W>x = Pb - gH <po§z> (2.74)
n 2 n-l n a-1 n
<po (u-c! wn 5> =n<(Pipow I n,>"8P (n n +nfn Tn_—m )>. (2.75)

The energy conservation law (2.33) has the form
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ot g py = unz(Po

From equations (2.35) - (2.40) we have

2 2
u 1w
s 8

Ug (ug-c) —= pog 5 + 8Posfo = Eo
wg = (ug - ¢) ¢4
X

Pob Up (up - ¢) + Py = Ej

. z
I=cn+gq(2), q(2) =] Q2) dz
[0}

u2+w'2 1 u2+w:
c

(2.

(2.

(2.

(2

Using equations (2.55) - (2.57) we can obtain the following expressions

(n =20,1,2

n n n
<po un ny;> = <PQn > + ¢ <pyn ny>

n 1 n+l
<po wn ’72> = <poQ’7 >x

n+1

n c2 n u2+w' n
<Pn r’z> = <(Eo' 'é— po)ﬂ ’77_> - <po

2 n n n
<po U n n,> = c <pyun n,> + <p,Qun >

<p

n
c <p w > + < L4 n>
L e Qwn

n
o uwm qz>

2 n-1 1 n a-1
<po¥W 1 Nz> = — <poQwn >y~ n <Pp ny> +
n
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(2.

(2.

(2.

(2.

77)
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n n n
gn 0 n. N Ny

n n n .
<UPn n,>=c<Pn n,>+<Q n > (2.87)

z

2.4.3 Steady Motion of a Homogeneous Fluid
Considering a motion of a homogeneous fluid we can put po =1
From Equation (2.57) we have
w (u—c) = Q(z), (2.88)

and taking into account (2.51) we obtain

E (z2)
w = n
Q(z) 2

(2.89)

The problem can be reduced to the following equation (see Equation (2.58)):
2
1 + r;X E
Q ————| = Qgy= — 7y, (2.90)
. P z Q
with boundary conditions (2.60), (2.61)
Henceforth we will consider the easiest case: irrotational flow (w=0)

and assume that

E(z)

I
=

(2.91;

Q(z) = — c. (2.92)

Equations (2.53) - (2.56) then take the form
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(v - )" +w
P = cw ,
z X
(u-¢)n, =-c,

n, W= -com,

with boundary conditions

Using the assumption that the motion is irrotational we obtain

Uy = — ¢ ngys

1
(S.U)ZE ng - U - E Cg XX

at

at

(2.94

(2.95)

(2.96)

(2.97)

99

(2.100)

(2.101;

(2.102)

(2.103)



at u +w - c un, 2.104
. . c a+1
(nU), =cmnny §z — (0 Jxx (2.105)
ntl
Equations (2.93 (2.96) and boundary conditions (2.97) (2.98
contain - our problem. From there we can obtain expressions for other
quantities (see Table 1 first column) In the second column of Table 1
there are depth-average quantities We see that all depth-average

quantities are expressed through ¢,, {ox and <§>xg The value ¢ can also be

calculated by , and {ox (see below)

Consider periodic waves (see Figure 3). Introduce an average over half

the wave length
(o]
2
£(x,2) = — [ £ (x.z ax 2.106
L -L/2

third column of Table 1 contains these period-average values. The
asterisk marks values which are obtained independent of z  This means that

are the same on all isopycnal surfaces

In Column A of Table 1 there are relationships between functions, which
are dependent on X and z. In column B there are functions independent of z.
On - the top of Column B there are relationships between depth-average values

At the bottom there are relationships for values on the free surface and on

rigid bottom In Column C there are period-average values They are
functions of z or constants The constant values are checked by an
asterisk
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Figure 3 Notation and coordinates for the periodic wave
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Figure 4 Notation and coordinates for the solitary wave



In Column A formulas are written in forms which .are convenient. for
ing

From Table 1 we can aobtain that

(¢}
I
= o} Idz

2 By~ g s+ 5 D) (2.107)

-+
Constant Eb is expressed through gox(x ) as

2
c 2 |
- @iy x) (2.108)

In Table 2 there are relationships between functions at the points x.

¢

L/2, 0 (at these points {3y = 0 and w = 0) and at the point x° (in these
points ¢ = 0 and 5 = 0) We can express <wl (x*)> through {o as
N 2 %
'3 2 e c2 wz(x ) 2 109
;ggo = ko~ 2— + <-?—>. ( . )

All period-averaged quantities are expressed in terms of u and Gb The

quantities <u> and Eb can be expressed in terms of go‘

We can obtain similar results for solitary waves (see Figure 4) There
are differences only in boundary conditions with respect to x. For solitary

waves we have
u, w¢ P-0 at X - + @ (2.110)

From these conditions we obtain that
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10

11

12

13

Table 1 - Columr

n=2z+7T

1 c
(o) = ~LCP) By [ ours

1

c

2
= ¢ - cu
z
=c (u-"1)
2 .
-c - cw
S-x
2
= 2 c =
7., = —{eg =U;
2 = k) =

14.

16

17

18

19

20.

21.

22

23,

24,

uwzﬁz,i c2(ut—'U)'; cw

Table ;, Column'A'(Coptinugd)

2

. 1 s E c2
.77=5C LOT)z 2—
) 4 u2+w2
uPn_=cE ¢ +c” (—u)+c
z o’z 2 . 2
2

. c .
F-u(fI‘+qu)-c(Eo-0;-—)§'z'—c2u

-1
(T == F) + (P o) =0

U ' S(¢?
= o6 0E) (%),

2

(o4
(U n), "»C'S'Z‘Eflxx
. 2
(Uf)z--U+C§z-E§ %%
1 2 1 2
gco-*;(us-w (+£’o )-Eo

X

1 2 2
P=E°-§(y—c) (1+§x



10

11

12

13

Table 1, Column B

<un_>

H :
<> = — 4 <>
o 2
2
C
<P>=-E —+c<w>-<

m “y
o

<wnp > = — ¢ <{>
n, $>e

<wi > = <U> - <u>

o0 c <U>
<wn> ¢ n - + —-<u>+ —
X cH®°®° cH 2 2
2 2 §°
<u np >=c¢ — — c <u>
z H

<w2 nz> = ¢ (<u> — <0>)

<uwn,> =

1P go 2<§_>
- —g—-c
H b H XX

g.0
(c — — <U>)
H
356 2 2

14

16

17.

18

19

20.

21.

22

23

24,

Table 1, Column B (Conti

2 2
<uw n,> = ¢ (<u> = <U>) ~ <

: g-o 2 <U>
<uPn,>=cE, —+c (-
H

¢ ‘ 2

2o c . 2 .
<F> = ¢ — (Eg+—)—c <u>
H 2

r *
<= “o 1 1 wz(x G
:ub=——-+——{ED-—g§o)+—<_ Waeel
2 ¢H 2 c
¢

DU> —(c-T 0 c 2
=(c- S)h- - E<§’>XX

cH 1 .2
Us = Cc - —(1"'5<') >xx)
n
)
2
(ug—~ c)(1+¢, ) =Us — ¢
X

up= Ug+ cH>, o

cH 1 2 =J ,
— 1+E<’7 >xx) 2 (Eo—ggo) (l+§(

"o

1 2
Pb=EO_E(ub—c)



10

11

12

13

Table 1 GColumn C

n.= z ¢ =20

2¢

2
2 ¢ -
—(u +w )=Eg -2—+cu.

P =20

unz>=0

_— 2¢c

wn, = — — &
z L

Table 1 Column C Continued.

2 - -

14 uwzﬁ_-c (u—wy —cw

B
16 'anZ-C(EO_? —n—ub

- 2—
17 Fr=-cu
3g . :: 1 2 =
18. —§§0 o e L e B
2H 2 2
U=ub *

c[u(0,z)—-u(-L/2,z)] + (LPny—2E,a),=0

2
21 cH[<u(0,z)>~<u(-L/2,z)>] = 2Eja(H)-g[{, (0)-

- 2
22 ub=c—| 2(Eq—g8 o) (145,

1 2
23. C*ﬁnoJZ(Eo—gfo)(lﬂo )
X

= U =Eo-—l-cub
2




Table 2

Relations between properties of the periodic gravity wave at t
crest (x = 0)-[or trough (x = -L/2)] and at the vertical x = X" .

where free surface elevation is equal to zero ({o(x®) = 0).

u -u =-c< >

u, =c—J2 (B - g )

he
*



10

11.

12

13

Table 3, Column A

n=2z+¢
w=(u-c)T¢,
2

u +w
=cu — -
2.

Pz = Cwy
u rIz = ¢ g.z

1 c c 1
(wn) = = = = +—-usL
X ¢ 2 2 2
2
nz =c §z - cu

uw = — 02 - Ccw
n, §x
2 2
T u + w Cc U
= 5 n, = E(sz )
3 2
un =c¢c¢{ —cu--cu

14

16

17.

18

19.

20

21.

22

23

24,

Table 3, Column A (Continued)

2 . o
uw n, = cz(u - U). - cw2

LS IR I o

c ] u2+w2
U.PY)Z=2—§'Z+C '(E-U)'FC =

~

F=u(T+PnZ)=c §z—c2u
1
(T-=-F) + (P n.),=0

[od

U = S(c?
. = C§z‘(U§)Z'E(§ ?xx

U : 2
( §)z=-U+C§z'E§ <%

1 2 2 02
g§o+5(us—0) (1+§OX )=E—
2
c 1 2 2
P=— -—(u—c) " (1+
5y Cx )



10

11

12

13

Table 3 Column B

H .
<> = — + <>
. 2 .

<P> = ¢ <u> - <—m—>

]
4]
wy

I
"

cH <w>
X

<unp > = C —
.nz

- >
c <¢>,

<wi > = <U> — <u>

g C(o <U>
<wn> =—7(¢ n -—— -<u>+ —
X cH © 9 2H 2
2 g-0
<y . >=c¢ — — ¢ <u
z H

2
<w nz> = ¢ (Ku> — <U>)

1 Yo 2
<uwnz>y= ng—gE—wc <C>4x

c §0
<T> = — (¢ — — <U>)
2 H
3 3% 2 2

<u p,>=c —-C <u>-c<u >
z H

14,

16

17

18

19

20

21

22

23.

24

Table 3 Column B (Continued)

2 2 - : 2
<uw n,> = ¢ (<u> — <U>) - e<w >

CZCO
+_
c3go 2 <U> u2¥§2
<uPn,>= ——— +c (— -<u>)+c< >
2H 2 2
c3§o 2
<F> = - —c <u>
2 92

g0, =C §o+cH(<U> —2<u>!

o c 2

<u> -(C_US); - §<§ >_Xx
cH 1 2

Ug = c — —1+=<n >xx)
n 2
o

(us—c)(l+¢o )= Ug — c
x

up= US+ CH<§>XX

cH 1 2 _j 2 2
—(1+E<n Sex)=2(c —2g8,) (45, )
n X



Table 3, Column C (Conti Table 3 Column C

14. uw?nz=c.(u—qb)—cws 1 n=2z+¢
- 2 _ _
D.
c2— | c3—— c2—— — -1 2 2
16 uPn,= —up+ —{z—Eesgt —uj 3 gl g=cu— —(u +w )
2 2 Z 2
17 F = t,—cu 4. P =gl
B U=y x > um, =cf,
3g 2 2 - - -
19 Efgo =(c —g)¢, , 6. wn, = — ca
- 12 - = -
(PCx) 2= Eu (0,z)n,(0,z) 7wty =up - u
2 2 o o i
ga, =c ag,—cH<u(0,z)> 8 (Pn) = —(cf+2u—uy)
.
us(O). o - -
gag=ug(0) (c— ) + um,=c ¢, — cu
1 2 2 B -
cthOJ(c —2g00) (1454 ) 10, wo, = c (u - up)
X
1 2 — —
2 up =cup~gl, Lo uwm, = ufy
- e — -
12 T = E (ng_U‘b)

13 urn, =c{, —cu- cu




Teble & Relationships between properties of the solitary wave at the

crest (x = 0) and between average values,

P = gl O

x =0 R
w=0, =0 —<F—2<T>
e
2
5 L -
F=rcu-—— H<un >—cf
- 2 _ 1
U - u Z «c SETE
Bl o =(—r-gH){ jrcH(<w>-—)
2 2
2T < F ; = 2 f— -
-— = U 5.
= z {T}!ﬁfn Tg‘n—r_‘{u}

Bt o= =
<Te-—f  =c(<u>-uy)
H o b

2
<w g.>—c (<u>- ub}




3 Approximated theories.of nonlinear motions with a large horizontal .scale

3.1 Governing equations

To consider some approximate theories we introduce cthe following
dimensionless variable:

(2,y) = L(x";y"), z = Hz' ,t=Lt'/c ¢=a¢',(u,v) = U (u v')

w = UHw /L, P = agpo(H)P'  h=Heh'

NZ = No2N'2, G = 058, po = po(H)po

Here

L = typical lateral length scale,

H = typical vertical length scale,

a = typical amplitude displacement of isopycnal surfaces,

typical phase velocity of waves or eddy translation velocity.

typical velocity of fluid particles
Dropping the primes we rewrite the problem (1.14) - (1.20) in terms of the

rescaled dimensionless variables

Du + afDweV¢ + F 2 VP + RO x & =0

P
(o)
1 2
B(L+oaf )Dw+F__P +sNy¢ =0 3.3)
PD
A,p * Ve [u l+rag) =0 (3.4)
w = QD¢ (3.5)

page 31




he boundar coi ons

_+ V (h-af) at z = h¥(x,y,t),

o
lf‘

i
1~

€ (3.6)
P=2(-= go at z = H. (3.7;
Here
v 9 9 .
U/€C o =a/H, B=H/L", Q =a/e = ac/HU,
_ .2 . 2
F = ag/cU Ro = QOL/c s = N aH/cU, F/Q = gH/c
da 8 -8
D=_+£(U_.+V———-)- (38)
at ax ay '

Assuming one or other dimensionless parameters small, we can reduce the

system (3.2) - (3.5) to one equation with one unknown function.

3.2 Long Gently Sloping Waves
We will deal with long gently sloping waves, i.e we will neglect terms
~0(ap, £2)

af = aH/L2, B2 = H4/ 14

(3.9)
In this case, from system (3.2)-(3.7) we obtain
u + ¢ (uu + vu i+ F 1 P - Rofiv = 0
t X W = : (3.10)
o
v + ¢ (uv. + vwv )+ F 1 P RoQu = 0
t X ;‘ yt (3.11)
o
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Q, +V [u@+ar) -0, (3.13)

zt

w=Q0t + e (ux + viy) (3.14)
Henceforth, we will consider gravity waves and assume that a~¢ and

Q=1 In this case equation (3.12) has the form

A + Fl P+ sNzg =0 (3 5
P

o]

When we consider large eddies and Rossby waves. (Section 3.3) werwill assume
that ¢>>1 and O =1 + §y 6<<1.

It is important that equation (3.12) is linear This makes it
possible to reduce the system (3.10)-(3.14) to a system for funétions

independent of z

3.2.1 Homogeneous Fluid of Variable Depth
Let-us put z = 0 at the undisturbed free surface

We seek a solution of the form

¢ = A(X,y,t) + z¢1 (X,y,t) + BCo(x,y,z,t) + 0(B82), (3.16)

u -Azl(x,y,t) + ﬂﬁz(x,y,z,t) + 0¢85 (3.17)

From (3.13) we can obtain, using (3.6)-(3.7)

R (3.18)

z
FP(x,v,z,t) = F{.—B8 |Q (z + —) + — up = Vd
y o P |Uet ey e
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Substituting :his equatior to 3.10) 3.11 anc  ntegrating wi
respect to z from -d¥(x,y,t) to 0 we obtaip
Q. ¥V U(d+ ag =0 (3.20)
Ut + (UUx +.VUy?'+ F.vgo + Ro X' U +
(3.201)
1/2 vd

+ g qQdt’?y¥ € e - L &#9(3
2

Here Ro = {0,0,Ro}, d*(x,y,t) =1 - h*(x,y,t), d(x,y) = 1 - h (x,y),

—_ . 1 °c ._
U= {U,v,0) =__ [ udz
* d*

o

The system (3.20) - (3.21) is good even at the shoreline where the
water depth d* (x,y(x,t),t)) = C.

In some particular cases it is possible to reduce system (3.20)-(3.21)

to one equation (Odulo, 1978

3.2.2 Stratified fluid of constant depth
Following Ostrovsky (1978) we present the solution of the system
(3.10), (3.11) (3.13), (3.15) in the form of an expansion of the
eigenfunctions of the corresponding linear problem in the hydrostatic

approximation
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P=2%p ¥ (2)P (x,y,t), (3.22)

where ¥, (z) are the eigenfunctions of the problem

-2 Q 2
(Po¥ ) +cp — s poNT =0
F (3.23)

v =20 at z=0 H
Here n is the number of the mode  The orthogonality conditions have the
form
2
<poN ¥

V>=<p¥ ¥ >=0 k=m 3.24)
m m

k ok

dz

0 ‘=

1
where < > = —
H

Substituting (3.22) into (3.10), (3.11), (3.13), (3.14] (3.15) and
performing the usual orthogonilization procedure, we obtain the single mode
approximation (dropping the index)

Et+sslgu§x+v§)+_v-(c2_}: ¢ + D_ QB¢ )+§ox—u=0
y n Qs n tt
(3.25)

Q. +V [u (1L +aSp) =0
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3 2,

v oo <p U 7
s Ynz  "n
¥ <p V¥
o nz o nz
It is easy to see, that in the case N2 = const nonlinear terms in

(3.25) are small, since

p(0) — p(H) «1
p (H)

If, in equation (3.21), we put depth d = 1 and, in equation (3.25),

Spn =1, Dy = 1/3, cn2 = Qs, we will get the same -equations

3.2.3 Two layer fluid of variable depth

Consider a two-layer incompressible fluid (upper layer at 0 < z <

lower layer at —d(x) < z < 0) Using (3.20) - (3.21. we can see that the

motion is described by equations

ot + [Ul (-1 + afo)]lx = 0 (3.27)
Uy, + €U U+ FP - % B oy = O (3.28)
Qot + [U2 (d + afo)]1x = O (3.29)
U, + €U, U, + FP, 4 s £/§ __U_z_tdL)x - 0 (3.30)
3 2 d
sP, = Py = ¢_ (s-1) (3.31)
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whe dz u,dz s = P1/Pn

Wé introduce a new 'functi02 o{ *dygb S‘I’O( + oLg,o Csﬁ

U=s Up-U;. = UZ LS + — = /&30 (3.32)

From (3.27), (3.29) we obtain

Uy = f’ﬂfﬁ U, (3.33
1 - ago

and using (3.32) we have

1 - a2
U=U, (s +d) aa (o (3.34)
l - at
(o
here a° _ 51 (3.35)
s +d
From (3.29) and (3.34) we have
@ 4 9 drefe) A-afo) g (3.36;
ot
1 - ag‘o a
X
From (3.28), (3.30), (3.33) and (3.34) we obtain
2 2 2.2
U+E[U Prfoloreafo 4+ (s-1) 5+
t Z oxX
2 s+d WL T uaaygy %
(3.37)
2
1 1/2 - .1/2. d U+d
s 2 A% S8 e a8 Uk L
3 3 2 d(s + d)

— a2
where b - ___s d

s +d
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function

Qo = — ¥x (3.38.

2
“U 1 + ea‘¥y (3.39)
(d—swx) (1 + sWX)

Then from (3.37) we obtain

(1 + sasz)Wt £ @2 (s +d) (b +. 204 + £2a2mx2)
; + .
(d-e¥_) (1+e¥ )| 2(s+d) | © (d-c¥_ )2 (1 + e¥_)2
X X X X
‘ t g X
(3.40)
2 sp 1/2 1/2 d2 dy
— c, ¥ —_— | (¥ d )y + (v - =.0,
0¥xXX 3(s+d) Xtt X 2 tt 7 /%
where co? = agH/c
When b = 0, it is easy to show that all quadratic terms in (3.40)
vanish, but other nonlinear terms do not The evolution of weakly-

nonlinear two-layer flow over topography was considered by Helerich &

Melville (1984, 1986, 1987).

3.3 Large scale eddies on "f-plane”

Now we want to consider Rossby waves or eddies and introduce a Rossby

number
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We assume also, that

F~Ro Q=14+ 56y o<

where r, is the Earth radius

We consider motions with large lateral scale and assume

<1l, ex=21
We rewrite equations (3.2) - (3.4 in the form
au = &y ¥ Dv+ uqawr_,
Ro o, y ¢ y

P 7
Qv - (-——)X + _ Du + #QﬂDng:

Ro P €

—sne 5P L opa 1+ ag ) DX,

Ro

And equation (1.35) has the form

Fa+ af Ju, + (L + afz) Spov = (moy + p Q) QDfz = 0.

£

We can see from (3.46) that
Q < max (g §)
Let
§ ~Q<1

If we exclude terms of order
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af wl fu au (3.49)

obtain from

Eap +p T 5, aP) + | 1-a( F?; Yz |6Px +
€ Rppo sN o
3.50)
+Q (1 + 6y) Tz ), FalEi——t o0
sN2 o sszn

This equation is known (Pedlosky, 1987  but we obtain it here using fewer

assumptions, only (3.42) and (3.48)
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4. CONCLUSIONS

Whe we conside: near motion in a fluid with free
transfer the boundary conditions to the undisturbed level and solve the
problem in a fixed region. In the nonlinear case it is difficult to solwve
the problem in an unknown (time variable) region. The motivation for

introducing the new functions was to obtain the problem in a fixed region,

without complicating the equations. The new functiens introduced in §1.2
satisfy these conditions In the case of a flat bottom, the domain -of
definition of mnew functions is a layer of constant thickness We

considered the case of variable-depth fluid only for long gently sloping
waves. For these only the undisturbed water depth appears in the final
equations (3.20) - (3.21) in §3.2.1, and (3.40) in §3.2.3.

It is a notable advantage that derivatives with respect to z do not
appear in horizontal projections of the momentum equations (1.14) It is
therefore possible to exclude z-dependence in equations describing motion
of a large horizontal scale (Chapter 3) and to integrate the corresponding
equations for plane steady motion. A second important advantage of the
approach described here is that derivatives with respect to z are present
only in two terms, P, and {,, and there are not derivatives of the velocity
components with respect to z in the system (1.14)-(1.17)

For the equations structured in this way it is possible to write the
mechanical energy equation in a divergence form (1.30) and to obtain the
impulse and energy conservation laws in the forms (1.28) (1.29) and

(1.31) accordingly. Moreover we can separate the kinetic energy
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4
=5 FPolz
the baroclinic potential ‘energy
N ¢ (4 2)

and the barotropic potential energy

s 1 2
n = E 8PosSo (4.3)
of a fluid column (§1.3) It is possible to write the Hamiltonian in the

obvious form (1.535) (§1.6)

It is clear that if we exclude nonlinear terms the expressions (1.9)
become identities and the definition of the function ¢(x,y,z,t) reduces to

w(x,y,z,t) = {¢e(x,y,2,t (4.4)
Hence this theory is important only for nonlinear problems

It is also clear that if vertical component of velocity and a vertical
displacement of the isopycnal surfaces are both zero, expressions (l1.7)
(1.9) are identical and equations (1.14) - (1.17) will be exactly the same

as equations (1.1) - (1.3)

To represent the vorticity we introduce a new function V (see 1.32)

For irrotational motion of homogeneous nonrotating fluid, the momentum

equation for function V has a simple form

Vo+Vy(u V-T+P) =0 (4.5)
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The function V is also useful when we consider the integr relations i

Chapter 2 (see formulas (2.43 (2.46 and 2.102 (2.105) and ables
1-4
It s interesting to compare the vorticity equations for

dimensional motions of homogeneous nonrotating fluid in a vertical plane

(x,z)

w

g t(uwy) =0 (4.6)

and in a horizontal plane (x,y

w3t + (uw3)x +,(Vw3>y =0 4.7,

Note that equation (4.7) is identically the same for new and old functions.

When homogeneous inviscid fluid moves under conservative forces we know
that a vortex line consists always of the same fluid particles, and vortex
filaments must be either closed or terminated at the boundaries But we
exclude motions having closed fluid filaments in a vertical plane,

therefore for motion in a vertical plane we have that

We need the function V also for the Clebsch representation of the

velocity to give the variational principle (§1.5).
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In Chapter 2 we considered two-dimensional motion of nonrotating fluid
showed that the problem can be reduce to one equ itior and
integral relations in the general case of rotational motion of a stratified
fluid Thereafter - making more and more assumptions (steady motion,
homogeneous fluid, irrotational motion) we obtained simpler equations and
more relations'for integral prdperties‘of the motion Since the domain of

definition of the functions is a strip of constant thickness, we have

> =< > =< > (4.9)

and

-t = t (4.10)

This means we can obtain integral relations from corresponding equations
very easily

In Tables 1 and 3 there are the equations in Column A, depth-average
values in Column B, and half-period-average values in Column C

Analogously we can obtain integral relations for averaged higher order
values (see (2.68) - (2.75) and (2.81) - (2.87))

It is easy to compare these integral relations with previous results
(Lonquet-Higgins, 1974, 1975, 1980, 1984, 1988; Yu and Wu, 1987) if we use

the relation

Hte H
J f(x,y,z,t)dz = [ f(x,y,z,t)n dz (4.11)
o] [o]

for any function £ For example we have
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u2+w2)dz = f (u2+w2)q~dz
o
In Chapter 3 we considered motions with large horizontal scale.
system (3.20 (3.21% and the equation (3.40) have no
singularities at the shoreline and can be used to calculate the solution to

problems concerning nonbreaking waves on a slope. Equation (3.40 ] can also

be useful also in studying the transformation of nonlinear internal wave

. ' . 2 2
propogation through the point where pIH1 = p2H2 (pl’pZ'HI’HZ(X) are
density and depth in upper and lower layers) At this peoint the
coefficient of quadratic terms changes sign.

introduction of the functions (1.9) is a very useful tool in

studying nonlinear motions of an inviscid stratified fluid.
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