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ABST~CT

The nonlinear motions in. an incompressible stratified fluid with a
free surface are considered. New functions are introduced which are
associated with corresponding functions on the isopycnal sur£aces.
Simplification of the system of equations and the domain of definition is
achieved with these new functions. Many new results are obtained using
this system. No approximations are used in the development, but a
limitation is placed on the class of allowed motions to those £or which th~
isppycnal surfaces are single valued.

Th~ general results are applied to obtain exact relations between
integral properties of periodic gravity waves of finite amplitude and to
obtain approximate equations £or the large horizontal scale motion of a
stratified fluid.



INTRODUCTION

description of the motion physical .quantities are regarded as

Alternativelyfunctions of position x and time t the fluid elements can

and thebe identified by their position a at some initial instant to

motion: specified by th~ subsequent position and velocity of these fluid

This is a Lagrangian specification of the motion, theelements

independent variables being the initial co-ordinates a and the elapsed time

t-to

We introduce a new specification of the motion the independent

variables being the position x and time t as in an Eulerian description,

the corresponding physicalbut dependent functions associate with

quantities on the isopycnal surfaces

(1968) introduced the surface potential for irrotationalZakharov

motion of a homogeneous incompressible, inviscid fluid cI>S(x,y,t:

~(x,y,ro(x,y,t) ,t» where z = I;o(x,y,t) denotes the free surfac~. and

that cl>Sshowed and canonical variables Ostrovsky (1978)ro are

introduced the vertical displacement of isopycnal surfaces r(x,y,z,t) in a

internal waves Odulo (1979)study of weakly nonlinear showed that an

analogous function r(x,y,z,t) can be introduced for homogeneous fluid.

In this paper we consider the motion of a stratified incompressible

fluid (§ 1.1)

In § 1.2 new functions, which are associated withintroducewe

For these new functionscorresponding functions on the isopycnal surfaces
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the system of equations and the domain of definitton are simpler The CO.

In § 1.4 we derive the vorticity cor'1servc::ttion law andconservation laws;

obtain an infinite n1,llnber of conservation laws, which are genera~izations

of well known conservation laws in two-dimensional hydrodynamics (Arnol'd

978) Fo.11owing Serr.in {1959) we. in.troduce .the C1ebsch J;:epresentatio? of

the velocity and give the variational principle (§ 1.5) (Benjamin & Olver

1983; Luke, 1967 Salmon, 1988; Seliger & Whitham, 1968) In982; Henvey

case of "potential" it is possible to give thethe particular motion,

Hamiltonian formulation of the problem (§ 1.6) (see also Voronovich 1979

Milder, 1982) § principle for theIn 1.7 Hamilton's homogeneous

irrotational fluid is noted (Miles 1977)

the possibilities of the new system we consider inro illu~trate

In § 2.1 we rewrite theChapter 2 the case of two-dimensional motions

system in simpler form and show that the problem can be reduced to one

equation of this one unknown function. In § 2.2 integral relations between

depth-average values are given. Simpler results are obtained in the case

of the steady motion (§ 2.4) In Tables 1 and 2 integral relations are

listed in detail for periodic gravity irrotational waves in homogeneous

fluid In Tables 3 and 4 similar integral relations listed forare

1947a,b; Lonquet-Higgins, 1973, 1974solitary irrotational waves (Starr,

1975, 1980, 1984, 1988 Yu & Wu, 1987)

Using the new functions obtained in § 1.2, one can readily obtain

approximate equations describing non-linear motions with large horizontal

the problem is introduced in dimensionless form.scale In § 3.1 The

system describing long gently sloping waves is noted in § 3.2 The
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particular of homogeneous fluiq of variable depth and stratifiedcases

Ana:logous resul~s are obtainedcases z-independent equatiops are obtained

for waves in a two-layer fluid of variable depth (§ 3.2.3 and for large

scale eddies on a "/3-plane" (§ 3.3)

CHAPTER 1 GENERAL THEORY

1.1 Governing equations

We will consider of ideal incompressible fluid,a layer rotating

around a vertical axis z with angular velocity 0/2 We assume that in the

undisturbed fluid density Po(z) increases with depth. The fluid is bounded

above by a free surface (at z = H + ro(x,y,t) and below by a rigid bottom

z = h(x,y) (hx ~ 0, hy~ 0)

The motion of a fluid is described by

D*u + O x u + p-l V p + g- 0,
3

(1.1)

= 0, (1.2)v. u
3

D*p = 0 (1.3:

with the boundary conditions

w = u Vh at z = h(x,y:

w = D*l;o, p = 0 at z = H + l;o(X,y,t) (1.5)

and with corresponding initial conditions and boundary conditions

respect to x and y
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H:ere u = {u p the pressureis the velocrty vector p the densityv w

*
D (1:6)

1.2 New Functions and T~ansformed Governing Equations

We will consider for which the of.only those m.otions, equations

isopycnal surfaces are single valued functiQns of x and y for all t Then

r(x,y,z,t), a verticalwe can function representingi~troduce a new

displacement of the isopycnal surfaces (see Figure 1)

p(x,y,z + r;(x,y,z,t),t) -Po(Z) (1.7:

In the case of a homogeneous fluid the function r;(x,y,z,t) is defined

by the equation

w(x,y,z + r(x,y,z,t),t) = rt + U(X,y,z + r,t) .rx +

(1.8)

+ v(x,y,z + r,t)ory

We also introduce new functions (see Figure 1)

u(x,y,z,t) = u(x,y,z + r(x,y,z,t),t)

v(x,y,z,t) = v(x.y.z + r(x,y,z,t),t)

(1.9)w(x,y,z,t) = w(x,y,z + r(x,y,z,t),t)

Pn(X,y,z,t) = p(x,y,z + r(x,y,z,t),t)

R(x,y,z,t) = p(x,y,z + I;(x,y,z,t),t)
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x,y,z i~ equal to the value of the corresponding old ~uncti9~ at the point

with the same x and yon the isopycnal surface which pa$sed thL:Qugh point;

x,y,z in the undisturbed state

It i,s to understand that independent variablesimpoI:"tant thestay

But the domain of definition of the new functions is simpler Forsame

the old functions the domain of definition is (see Figure 2)

-a! < x < Xo -a! < y < a!, h(x;y < z < H + r;o(x,y,t) (1.10)

and for the new functions it is

, h*(x,y,t) .c;:: z <H, (1.11)-cx><y<cx>

here h* and X: are defined by the following equations

* *
h (x,y,t) = h(x,y: -r(x,y,h (x,y,t) ,t)

* *h (x (y,t), y,t) = H
o (1.12)

* *
If h It is clear if h O (flat bottom) then h = a

*
< H then x = --<0

O

and the domain of new functions is a layer of constant thickness

It is easy to obtain relations between derivatives of new and old

functions

Rz = (1 + rz)pz and so on. (1.13:Rx = Px + r;x Pz
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Figure 1 Undisturbed isopycnal surface (solid line) and the same
isopycnal surface at time t (broken line).

Schematic diagram of fluid domain.Figure 2



Equations 1.1).-.'1.3) theare satis~ied :at any point fluid.in

we car cnange - to z +Thel-efore I" ( ... ) --,. ~ --, , -, ~ in a'-crurnents
-0 functions

Using. (1:9) , (;1..13) ~~ obt?in fr9m (1..1)-(1.5)

Vu + Vw .VI; + !
Po

\1 p + .0 x u -O ,
( 1.14 )

<i + l;z) Dw .~ 1- Pz,+N2r =O~ (1.15)-
Po

= 0,r;zt+ v. [u (1 + r;z)
(1.16)

(1.17)
w- Dr

From (1.7), Cl.9) it follows, th~t

R (x,y,z,t) = Po(Z)

(1.18)

Boundary conditions are

(1.19)rt = u .v (h(x,y) -r) at z = h*(x,y,t)

p = gpor;. r; = r;o at z = H.
(1.20)

a a a
D=-+u-+v-

at ax ay (1.21)

If we consider a homogeneous fluid, ( 1.14 )system (1.17) changes a

little equations (1.16), (1.17) stay the same, in (1.14) -(1.15) we take

Po(Z) = const (N2 = 0).
TheClearly (1.8) and (1.17) are the same.

problem ( 1. 14 ) (1.20) is simpler than the problem (1.1)-(1.5)
in the

following ways:
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T.h~ domain of.defini.tion of the new functions is simpler In the

darernea,

system in a simple fixed region,

is simpler then D* (1.(1.6)2 1.21 and equationDOp~rator

contains no differentiation wi.th respect to z

v and by t;(1.17)3 Function w is, simply 'related, to u

Instead of a problem with ~~x (~,v,w,p,p,ro) unknown functions we4

.
l:lave obta.ined a proplem with four (u,v,p,r;) unknown functions

The Impulse and Energy Conservations Laws1.3

(1.22)Let 11 -~ + r;

Henceforth in this chapter we will consider only the case h- 0 Using

to eliminate Dw from(1.15 1.14). we gat

'7xN2 -Ov'7z = 0
77zDu

+ .!:- ('7 Px

Po

-'7xPz z

"lzD'
--(~zPy -~yPz) ~ r~yN2 -Ou~z = 0

(1.24:
Po

Multiplying equations (1.23),(1.24) and (1.15) by nun-l nvn-l and nwl'l-l

multiplying by un,respectively, and then adding to each (1.16) vn and wn

respectively we obtain

[: (Px'7z-Pz'7x)-N2r;'7x

Po

ant + an+lx + (v an)y + n an-l -Ovnan-l -0,
(1.25)T}z

[~(Py~z-Pz~y)-N2r~y
Po .

+ nnubn-l = 0,bnt + bn+lx +
(1.26)

[k Pz + N2r] -0,Cnt + (UCn)x + (v Cn)y + n ~ (1.27)

where an = Po ~z un,bn = Po ~z vn, cn = Po ~z wn,

page
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l.nteg.rating \1.25.) (1.26 ov~r z from O to H for n = 1 we obtain

Ix + Sxx + Sx:
bldz -0a

(1.28t x y
0

IY + sYX + sYY
H

O f a+dz = O

o
(1.29x y

In the case 0- O these equations are impulse conservation laws

Here

x
IYI

H
= Ip 11 udz

o z
o

H
=

I p 1] vdz,
o z

o

xx
s

2 2
H

= I ['1 (p v
z o

o

sYX
H

= J" p uvdz
z o

o

Adding (1.25)-(1.27) for n = 2, we obtain

+ v.E
-

U'7 (T + P)
z

+ (P" ) = O
t zt (1.30)

Where

E = ~zT+~i, 2T-po(u2+v2+w2), ~i = 1/2 poN2r2
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lntegrating (1..30) over z from 0 to H, and using bo.undary cond~tions

x
y+F +F ='0

.E {1.31:t x y

i s
Here E = K + n + n

H
K = J1J Tdz

z
o

1 2
= -9 p (H)~

2 o o

H .J 1. s
= 7r dz, n

o

ni

Fx
H H

= J u~(T+P)dz, FY = Jv~ (T+P)dz
o z Z

o

It is important to note that the old functions do not.allow separation of

energy nikinetic energy K arid the baroclinic potential But the

functions make this separation easy

1.4 The Vorticity Conservation Law

Now we will obtain an infinite number of conservation laws which are

generalizations of well known conservation laws dimensionaltwoin

hydrodynamics (Arnol'd, 1978).

We introduce the new functions

-
v =

--

(u + w \73'1)u, v, W} = p (1.32)0

From (1.14) -(1.15) we find after manipulation

page 9



"
iJ)

0
<;)k

/i=u.V
-

k- {0,0,1}Here w = (w, T F,
= ~3x V -vorticit;y

w, w
3

By taking the curl of (1.33) we can show that

0

Wt+ V3X(w + poO)xu + (1.3/= 0

p 0

The projection of (1.34 on the axis z has the form

C.>3t+ [u(C.>3+ PoO) v(VJ 3 + p 0) ] = O
o y

(1.35+
x

This equation is a law of conservation of the vertical component of vortic.ity

Using (1.16) we can obtain an infinite number of conservation laws

(JJ3 + PoO 11)3 + PoO

+ v.
Uf7z<I><

'7 <I> (z = 0
(1.36)

TI, '1zz
t

Here ~ is an arbitrary function We obtain conservation laws (1.34) (1.36)

at the expense of a limitation of the class of allowed motions The initial

system (1.1)-(1.3) does not have these conservation laws

1.5 Variational principal Clebsch representation

Henceforth, except Chapter 3, we will consider the case 0=0. It is then

page 10
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possible in tr.o<;luce (.Se.liger and :Whithamto the Clebsch rep.resenta tion

-
v = ~3cf> + A'V3JJ. + X'V3Po (1.37)

where 4>. )., J1. and X are new unknown functions

Then the vector vorticity is

(1.38:
--

V7 3 >.xV7 3.LL .+ V7 3XXV7 3P o

From (1.37) and (1.33) we have

(1.39)\7A + D>.. .\7.u + >.. .\7D.u + [DX + Tip -gl;]\7p = O
o o

where

/I. -D<1> -T + P.
(1.40)

By (1.37) we have introduced four functions (ill. A, }J.. X) in place of threE

(u, v, ~)

Therefore we can put

DX + T/po -gl; = 0 (1.41

Then from (1.38) we can find

A + >..D),L = R(),L,>..,t) ( 1 .42 )

and

R). = D}J., (1.43)

RJ1, = -D>... (1.44)

for whichWhere R is an arbitrary function

page 11



dR

atdt

In (1.14 we obtain-(1.16) replacing u and",! by cP >.., }J.. x and "

together w{th ( 1 .40 ) (1.42) a system of five equations in five unknoWl

functions This system follows from the variational principle

00 H

5 III I

-00 O

P(t/>,A,J1;,X,TJ)TJ~dzdxdydt = 0 (1.46:z

Here

p = R + T -D4> -AD}J. (1.47)

In TI. X, <P are varied independently to give1.46) >., 11.,

DJl = R,\ (1.43)

DA = -R (1.44:
jj

DX + T/po -gl; = 0, ( 1.41 )

w = D17 (1.;1.7)

+ V(U'7 = 0 1.16)'1zt z

1.6 "Potential" motions. Hamiltonian description

We can consider motions for which

R=A=J1.=O ( 1 .48 )

We will call such motions "potential" In this case the problem is reduced

to the system

page 12



= w: -4. ~rJ (1; 50:
'7t

where the dependenc~. of 4> on X and 1] is defined by the problem

(w- u.\7...)., z + (U1lz)x + (v" ) = a
z y (1.51)

with boundary conditions

TI -0 at z = 0, 1.52:

1 53'.,
pogr; -T = 0 at z = H

formWe can rewrite (1.49) (1.50) canonicalth-e system in a

(Voronovich, 1979; Milder, 1982

OH

0'1

oH
1

Xt 77t
ox

Here the Hamiltonian is

00

H = II 2 ]dxdy

(1.55)

Note, that (1.51) can be written in the form

6'H

6'4>

7 Irrotational motions of homogeneous fluid

Now we add to the conditions (1.48)

(1.56)Po = 1, X = 0
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corresponding to an .irro~ational motiot:l of homogenequs fluid, In. thi$ case

rewritten in the form

tP, 2 2z
-(l+r;x +r; y )-</Ix'1x-</ly'1y

+(If)xf7z-lf)zf7x)x+(lf)yf7z-lf)zf7y)y'C= 0 (1:57)L«P,T/) =

TIz

2
(1.58)) = 0

'Pz 2

~t+'Px~x+'Py~y- --(l+rx +ry

~z

boundary conditions

~ = 0 at z = 0 (1.59)

4> 2

z 2 21 2 2 1
4>t + -(4>x + 4>y ) --

2 2
(1..60)-;-2 {1 + t;:

z

+ gt; = O at z = H+ .<"y
K

Integrating by parts

17) dzdxdy- 0 (1.61:

CX) H

II I </J .L «/J

-CX) 0

we obtain

<Pz
-I

'7z

a>H a>

2T = 2II I~zTdzdxdy = II{~[

-a> O -a>

2 2
(1.62)(l+rx +ry )-~xrx-~yry dxdy

z=H

Using (1.58) we have

dxdy
(1.63)z=H

the kinetic energy of the entire fluid volume can bethatmeans

expressed in terms of functions and their derivatives at the free surfacE

Also the potential energy can be expressed through ~o as
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s
zn =

CX)
rr 16,

Hence the Hamiltonian can be expressed by means of the functions and their

derivatives at the free surface

-s
H=T+ll (1.()5)

The equation (1.60) and the equation (1.58) at z = H can be written in

canonical forIil (Miles (1977))

oH SH

( 1 .6.6 )T]=-
t

ttJ =--
t

017 64>
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..

Chapter 2. 'rWO-DIMENSIO~AL MOTIONS

2~1 Governing Equations and Reducing th-e System to one Equation

In this chapter we will consider two-dimensional motion in a fluid of

120' .,constant depth witho~t rotation In this case the problem (1.14) -

has the form

1
+ UWc ) + --.:.-- Pc = 0,

u" + uu + 1]
x (w

(2.1)t tx x x
P, 0

1

+uw)+-p
x

p~

2
+ N 1; = 0,

(2.2)z

0

+ (Uf7 ) = 0,
z x (2.3)

(2.4)w = 11 + U1I ,
t x

with boundary conditions

at z = H (2.5)p = gporo

77 = 0 (2.6)at z = 0

p has the formThe corresponding problem for functions V, ~

'-
1 + rJx .

.
2

rJz

2 2
(2.7)) + P]x = 0-wut +

1

-(U

2po

'7x

'7z

1 2 2
(2.8)= 0,wt + -[UW -w ]x + Pz + PaN r

Po

(2,9)+ [U'1-- W'1. = 0
z x'x

(2.10)w (I + 1Jx
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the arne boundar conditio

From 2.7 -(2.8) we can obtain

2 2
u + w

w.> -po(- gl; + )] .;. 0
~ x

Wr +

2

where vorticity w is given by

( 2; 12)w = Uz ~ Wx = (PoU)z + (Po'1xW)z -Po ('1zW)x

(2.1L) the y-component of { 1 .34 ) for the plane case withoutEquation is

rotation

We will say that an equation has the form of a conservation law, if it

has the form

Ft + <I>x = 0 (2.13)

It is clear that we can introduce a new function ~

( 2.14 )F ~ <t>x

to obtain the expression

(2.15)4>t + ~ = C(z,t).

+ <1> at time t is uniform on an isopycnalThis means that value of 4>t

surface

Equations (2.3) or (2.9), (2.7) and (2.11) have the form of (2.13) We

introduce the functions B and cP

(2.16)'7 -z = r = Bx.

u = I;/ix' <2.17)

to obtain from (2.3), (2.7) and (2.11) the following system

(2.18)°tz +.u (Oxz + 1) = Q(z,t),
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+ ".

2 2
+ wu

-O(zct>zt -Wt UUJ -p (- gr; +
0

2

where functions Q and E can be determined from boundary conditions at x, and

O(z,t) = Ez(z,t) ( 2 .21,)

It is possible to reduce the sy,stem (2.1 (2.4: to an equation for the

function e wand 11 in terms eJndeed we can express functions u,

(2.16:11 = Ox + z

Q- 8tz

1 + 8---

~

(2.18)u =

xz

B
tz

w = (Jxt + (Jxx
(2.4' )

+ e
x.z

Substituting (2.12) (2.16), (2.18) (2.11:and (2.4') into equation we

obtain the equation for 8 (x,z,t)

2.2 Integral Relationships

We will defineThe integral properties are of particular interest

depth-averaged functions

1 H
> = -I.

H o
dz (2.22)
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From system (2,1) -(2,4) we can obt,ain the fo~lowing equations (n=O,1,2,.,,)

'1nT/z "n(TIn Tlz)t

(Po u"n "z)t + (Po u2 "n 17z)x + (P 17n 17z)x -.(P 17n 17x)z

-Po N2 r'Jn T}x = Po uw ("n)z ( 2, .24 )

(Po w ~n ~z)t + (Po uw ~n~z)x + ~n (Pz + Po N2 ~) = w2 ~n-l ryz (2.25)

Integrating these equations .with respect to z fro~ .0 to H, we obtain

the following equations (n = 1,2,3 )

<Po rJz>t + <Po ti rJz>x = 0 (2.26)

+ <UrJz>x = 0 (2.26')"0
t

<Po~P ~z>t + <Po u ~n ~z>x -n <Po w ~n ~z> (2.27)

<~n ~z>t + <uqn ~z>x = n"<w ~n ~z>
(2.27'

<PoU~z>t + [<Pou2~z> + <P~z> -9 <porrz>]x -0 (2.28)

<pou~n~z>t + [<pou2~n~z> + <p~n~z>+ g«por~n~z>

(2.29)-<po~n+l>/(n+l))x = n<pouw~n-l~z>

(2.30)H< PoW1lz>t + H<pouw1lz>x = Po -g~o

(2.31)<pow~n~z>t + <pou~~n~z>x =

= n[<pow2~n-l~z> + <p~n-l~z> -g<por~n-l~z>] -9 <po~nrz>.

(2.28) The energy conservation law (1.30) and (1.31) in this case

a
(-- = 0) can be rewritten in the forms

ay

1 2 2 ' 2
-[p '1 (u +w )- g p r2 o z o

+ P)u~z]x+(P~t)z = a (2-.32)+
t

page 19



Values of functions -on the free surface we will denote as

(2.34't: (x,H,t) = fs x, t)

and on the bottom as

(2.35)f (x,O,t) fb (x,t)

From (2.1) -(2.10) we ~an obtain

2 2
+ wu

s s
ust + (Us +gp r;) =0

as a x (2.36:
2

(2.37)Ws = ~Ot + Us ~ox

(2.38)Pob (~t + ~ ~x) + Fbx = 0

p = 0 2.39zb

It is useful to introduce a function

(2.40)

z
I(x,z,t) = I u'1 dz

z
o

From (2.3) we have

FIt + Ix = 0 (2.41)

and using (2.4) we obtain

( 2.42 )W=U'7 -I.
x x

~

From (2.1) -(2.6), (2.11 and (2.12) we can obtain
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H «J» = Us ( 2.43 )--POb ub -H <Po w ~z>x.

n-l
H <WrJ > = Us"s 2.44:-H<powTJ TJz>x-n<pouTJ 1/z> ,

(2.45:H <uw> = Us
1 2

U --p ub -H<p UWTJ > -p .
s 2 ab a z x .as

2 2

<UTJz> Us -<Po(U (2:46)+ w )'1z> -'- <polw'1z>x

We can also obtain the equation

n-ln n n
)t + {UUJT} x = 1] Po w (2.47)

which gives the following integral relationships

2 n-ln
2 .

u +w

2

nn

<WT] >t + <UWT] >c -9 <r'7 Po += <
n

'7 Pox

2.3 "Potential" motions

Consider motions for which velocity can be represented in the form

(2.49)v = 4>x, w = 4>z + XPo

From (2.12) we have

(2.50)w = -x Po

x

Hence from (2.11) we have

2 2
+ wu

-gr = 0x + ux
t x

+
(2.51:2
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This. equation together with (2.9) and (2.10) gives us three equati0ns

1ree funct d 1]I/> see (

2.4 STEADY MOTIONS

2.4.1 Governing Equations

All equations become much siII!pler if we consider steady IIIotions,

is, motions for which

f(x,z,t) -f(x-ct,z) or equivalently ft = -cfx (2.52)

and we can integrate all equations which have the form (2.13)

Indeed, we have from (2.1) (2.4)

+ p = E(z) (2.53)

1
Q(z)w

2
+Nr=O-p (2.54'x +

ZI,

0

'7 (u-c) = Q(z)
z (2.55:

'7zw = Q(z) '7x (2.56)

Equation (2.30) is the Bernoulli equation.

From (2.11) we have

2 2
+ wu

= O(z) (2.57:0
2

Where (see (2.21

Q(z) -E'(z) (2.58)

All variables in (2.57) may be readily expressed in terms of ~

page 22



Q
2.59

1] cz

17x

1lz

w = Q
(2.60'

2

l+1}x2
P=E-Q (2:61)Po

2
.'7 ,z

°0.Q -Po Q T}xx
w =

(2.62)

Now £rom(2.57) (or from (2.54)) we obtain an equation for 17

~],

1 + rJx

rJ2
z

Q2
P, + p N2r + E (z:

o
= 0 (2.63)0 0

x z

~e must solve this equation with the boundary conditions

+ gp r -E at z -Ho , (2.64)
,,2

z

TI = 0 at z = 0, (2.65)

and some boundary conditions in x.

2.4.2 Integral relationships

Rewrite Equations (2.22) -(2.24) for steady motion

page 23



n
(2.6:c) 77 =J;.: = "' (71 )Z

2 n
N r '7 '7.

n n
-( TI p TI"(u" -c) 1] 11

..z
+ 1)

-Pc 0 x. x.'z

(2,.66)

il-l
UWT]

'7z
;1. p 0

n.: I 2n. n n
(2.67)(u- c) w 17

z
+ p 1}

z .
p + -p n. TI

o
1] p 1] w

z0 x 0

In~egrating over ~ fro~IO to H we have (n- 1,2,

rJo

H

<u nz>= c + Qo Qo= <Q(z» (2.68)

n-ln n
<u 1) 11z>~ + n <w 77 (2.69,)ro-170 77z>

H A

<p (u -c)' '7 > = Ql ,
O Z .-

Ql = <Po Q(z» (2.70)

n-ln
(2.71;17->,

= n <P, 1] >
z

(u- c '1 w TI
;:; x D

2
<p 1] > -c <p

z o
u 17 > + <P 17 > -g<p ~ ~ > = R

z z o z
(2.72)u

0 D

2 n n
u 77 77Z> + <P 77

n
rJ rJ > -c <p

z o
1] >

z
u

(2.73)

n+l- n-ln
+ 9 <Po

!1z T]z>1] > = n <Po UWTJ
1

'7
n + 1

H Q (z) <w>x = Pb -9 H <Po.\"z> (2.74)

2 n-l n-ln n
17 z-1} ) > . (2.75)Wl] l]z>x=n«P+pow )1]<Po (u-c:

The energy conservation law (2.33) has the form
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2 .2
u +w

1'/

2
1

> = -

c

2. .
u +w

+ 9
UT/z(po~o

From equations (2.35) -(2.40) we have

2 2
u +w

s s c
Us (us-c) -Pos + gposro -Eo (2.77)

2 2

Ws = (us -c) ro (2,78)
x

2
cPob ub (ub -c) + Pb = E4 (2.79):>
2

2

I = c '1 + q (2), q (2) = f

o
Q(z) dz (2.86)

Using equations (2.55) -(2.57) we can obtain the following expressions

(n = 0,1,2

n n n
<Po u~ ~z> = <PoQ~ > + c <Po~ ~z> (2.81)

n+ln
<PoQ17

<Po W'7 '7z> =
>x (2.82)

1

n + 1

22 .
u+w

2

n n
(2.83)

2n c n
<p~ ~z> = «Eo- --Po)~ ~z> -<Po

2
TI Tlz> + C<PoUTI Tlz>

2 n n n
( 2 .84 )<Po u ~ ~z> = c <PoU~ ~z> + <poQu~ >

(2.85)

2 n-l n-l1 n
~z> = -<PoQw~ >x- n <P~

n
<PoW 11 '1z> +

(2.86)
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n
g(n

n

0\1) 1)z:

n ,
" " z-

n ~ n
(2.87)<u. p '1 '7z>= c <P '7 Tlz> + <QP TI >

2.4.3 Steady Motion of a Homogeneous Fluid

Consjder;ing a motion of a homogeneous fluid we can put .po = 1

From "Equation (2.57) we have

w (u-c) = O(z),
(2.88)

and taking into account (2.51) we obtain

E (z)

Q(z)

w =
'7z (2.89)

The problem can be reduced to the following equation (see Equation (2.58)):

E

[Q -Q'1xx= -'1z, ( 2 .90 )
Q

with boundary conditions (2.60), (2.61)

irrotational flow (w=O)Henceforth we will consider the easiest case:

and assume that

E(z) = E ,
0 (2.91;

Q(z) = -c.
(2.92)

Equations (2.53) -(2.56) then take the form
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2 2
(t -c) + w

(2.94:p -cw ,
z x

(2.95)(u -c) '7, = -c,
z

(2.96)11 W--C1l
z }I:'

with boundary conditions

'7 ~ 0 at z = 0, (2.97)

at z = H. (2.98:p = 9 ro

From (2.93) -(2.96 we obtain an equation for ~

99= 77xx

z

with boundary conditions

1] = 0 (2.100)at z = 0, H

2
1 + '1x

2
2 '1z

2 + g17 = Eo + gH at z = H (2.101:c

Using the assumption that the motion is irrotational we obtain

(2.102)u = -c '7xx'

z

(2.103)<rU)z- crz
1 2

-U --cr xX'
2
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1 2 2
~L 2.104u + w -c U'7x

n+l
(11 U)z = c n 11

)xx (2.1.05)~z
c

-(11

n+l

(2.93 (2.96)Equations and boundary conditions (2.97) (2.98:

contain our problem fot otherFrom there we can obtain expressions

quantities (see Table 1 In the second .colwnn of Table 1first column)

there depth-average quantities We all depth-averageare thatsee

quantities are expressed through ro. rox and <r>xx The value c can also be

calculated by o and rox (see below)

Consider periodic waves (see Figure 3) Introduce an average over half

the wave length

o
I

-L/2

2
f (x, zf(x,z) = - dx 2.106

L

third column of Table 1 contains these period-average values ThE

asterisk marks values which are obtained independent of z This means that

are the same on all isopycnal surfaces

In Column A of Table 1 there are relationships between functions, which

are dependent on x and z. In column B there are functions independent of z.

On the top of Column B there are relationships between depth-average values

At the bottom there are relationships for values on the free surface and on

rigid bottom In Column C there are period-average values Theyare

functions of checked byz or constants The constant values are an

asterisk
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Figure 3 Notation and coordinates for the periodic wave

Figure 4 Notation and coordinates for the solitary wave



In Column A formulas are wri tten in forms which .are .convenient for

ing

From Table 1 we can obtain that

TJo

H

(2.107)c =

*
Constant E is expressed through r (x) as

ox0

2
2 *c

Eo ) (2. iO8)-( 1 + r ox (x
2

In Table 2 there are relationships betwe~n functions at the points x

* (in theseL/2, 0 (at these points ~x -0 and w = 0) and at the point x

points r = 0 and TI = 0) We can express <w2 (x*» through ~o as

2 *
w (x ).

?
(2.109)>.

All period-averaged quantities are expressed in terms of u and ~ The

quanti ties <u> and ~ can be expressed in terms of r
o

We can obtain similar results for solitary waves (see Figure 4) There

are differences only in boundary conditions with respect to x. For solitary

waves we have

p -.0 (2.110)ti, w I; at x-. :t fS)

From these conditions we obtain that
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Tabl~ l, Column B Table 1, Column B (~on~i

1
H

<'7> = -+ <I;>

?
2 214 <uw '12:> = c «u> ~ <U» -c<

Eo

2 2 2
c u + w

3
';0 2 <U>

<UP77z>=cEo --+C (-

H

<P> = E -+ c <u> -< >
0 162 2

4 cH <w>x = 9 -<"0- Pb
17 <F> = c

2
c 2

(Eo+--)-c <u>
2

ro

H

r;o

H

5 <Ur]-> =

18

6
C;o

<Wf] > = -c <r>
z x c 2

--<~ >
2 :

19 <U> =(c~Us).
H ~x

7 <wr > = <U> -<u>
cH
-(

'70

20, u = c -
s

1 2
: 1 +z<11 >Xx )

Eo17o

cH

c <U>
+ --<u>+ -

2 2

98 2<W'7>, -x r rJ -

cH o o 21 (us- c)(l+~o ) = Us -c
.I{

2 ~o

H

29 <u -c <u>'7>=C
z 22

ub= Us+ cH<I;>xx

210 '7 > = c «u> -<0»
z

<w cH
-(

'10

23
1 2

J:l+-<~ >xx> 2(Eo-gro>(1+rc
2

ro

H

11
2

-c <1;>xx

1
<uw17 > --F

b -g.z x H 224 1
Fb = Eo -2 (ub -c)

ro

H

12 -<U> )
c

<T> = -(c

2

3 ro

H

13
3

<u 11 z>-=c
2 2

-c <u>-c<u >



'fable 1 Column G
Table 1 Column C Continued:

1 1; ~ 0
-

77 = z

2 2 --

uw '7 --c ( u-u1
2

14 -cw

2c

TJ-=0-CLo 2

1 2 2 c2
-(u +w )=Eo---+cu
2 2

3
2 2

c
lP'7 -c(E -

z o 2

c -

~ub
16

4 p ~ 0

2-

F=-cu17

5 -0
UrJz

3g ~

-ro
2H

18

2c
=--a

L
6

W'1z

u = ub *

c[u(O,z)-u(-L/2,z)] + (LP'7x-2Eoa)z-O

2
8 21 = 2Eoa(H)-g[r; o (0)-rwx = u -ub

cH[<u(O,z»-<u(-L/2,z»j

2
ti rJz= -Cti9

22
x

210 W-'7z = c (u -ub)

2
23

1
C~FJo. 2 (Eo-g': 0) (1+,: 0

H :
)

K

11
UW"z --ut;x

c
T =

2
ub12 *

2
13

2-
= -c u- cu

3

u '1z



Relations between properties of the periodic gravity wa:ve at the
crest (x- 0) [or trough (x --L/2)] and at the vertical x -.x*

where free surface elevation is equa:l to zero (ro(x*) ...0);

Table 2

L *x- 0x-- or x -x
2

r -0. rxx
r -O

x

u- 0
w- 0

W'--cr
.-x--c rxxuz

1

2
2 P-E c

p- Eo

1

--(c -u)
2

0

u-u

u -u. --c <r. .>
s b XX 2 E

2 0
---1

rox 2c
.-gr )

0
u

s

c

2 E
1

2

o
---1

2

2
<'1 >xx

c

2
c

Pb -Eo 2

u -O
b

u --Hc <r >
xxs



Table 3, Column A Table 3, CoLumn A (Continued)

1 T]=Z+r

2 2
= c (!,1- U)- cw14

2
uw 11

z

t.' = (u -c) t;,

c
.-

2
22 .

u +w

2

=cu -
1 2

u +w

2
16

c3 2 U
uPT] ~r +c (--u)+c

z 2 z 2

4 Pz = CWx

3 2
17. F=u(T+P~ )=c r -c u

z z

U1J =cr
z z

1
(I --F)c x

18 + (P 11 ) =0
x z

6 W1]=-Cr
z x

19
I{X

7 wr =u-u
x

20 u = -c rxx
z

1 c c 1
(wrJ) = ---r +--u+-t

x c 2 2 2

21,
c 2

(U '1)z = c rz -2'1 xx

2
r; -cu

z

'1 = c
z

c 2
CUr) =-u+cr --r xxz z 2

22

2
10 w l]z = c (u -U)

2
2 c

)~
2

23

2
11. UW7) --c ': -cw

z x

24

2 2
+ wu

12 T = 1}
.-z

c
= -(cr -U)

2 zL

3 3 2 2
13 u '7 = c I; -c u -cu

z z



Column B (Continued)Tab1:e 3

Column BTable 3

141
H

<rJ> = -+ <I;>
2

2.<" 0\.:

+-

31;
c o

2H

z2 2 <U>

2

+ wu 16 +c ( ><uP" z>-=3 <P> -c <u> -< >
,.l

3r;, 2c ,)
17 <F> --c <ti>cH <;:w> = 9 t; -F

bx o H

r; 2 20 18 gro =c ro+cH«U> -2<u>'
c-

<U'1z> -H

c 2
--<r >.

2 ..

0
19 <U> -(c-U )-

s H6 -c <r;>. ICXx

1

(1~"

cH

'10

20 u ~ c -

s7 <wr..> = <U> -<u>

<U>

-<u>+ -

2

21 (us-c)(l+r;o )= Us -c8
x

~o

H

22 22
ub= Us+ cH<r;>xx9 -c <u><u 1]>-C

z

cH
-,

'10

2 23.10 '1 > = c «u> -<U»
z

<w

ro

H

1
Fb = cub- -ub

2

2
2411

2

-c <r;>xx

1

<UWfj > --F
b -g.

z x H

r;o

H

c
<T> = -(c

2

12 -<U»

3 ro

H

22
13 -c <u>-c<u >

3

<u TI z>=c

2

>xx)



Table 3" Column C (Conti
Table 3 Colwn1:1 C

2 2 --

uw "z=c (u-ub)-cW
2

T}=Z+r
14. 1

2
D.

2c -
uPT/ = -u b +

z 2

3 2
1 2 2

gl;o=CU- -(u +w )
2

c- c-16 3

3- 2-
F =c r-- c u17 4. p = g~ 0

.:;

u- ub
IB 5*

U1Jz =cl;z

3g 2 2
-r; =(c -gH)r; 6. WTJ = ~ ca

.~ o o z

19
2

7
1 2

(prx)z= -u (O,Z)17z(O,Z)

2

wrx = ub -u

2 2
8gao =c ao-cH<u(O,z»

u (0)
s

2

l-

-cu9.
gao=us(O) (c- )

2

u '7z=c r;z

1
-u2 b

2
=cub-gr;o

11 UW7]z = urx

c
T --(crz-ub)

2

12

2
13

3- 2-
=c ~z -c u -cu

3

u '1z



Table 4 Relationships be t"Io'een properties of the solitary wave at the

crest (>" -0) and between average values.



3 Approximated theories of .nonlinear motions with a large horizontal.sc:ale

3.1 Go~erning. equatio~s

To -consider theories the followingsome approximate introducewe

dimensionless variable:

( ) , , , ,

x.,y -L(x ;y ) , z -Hz ,t-Lt /c g--ag-' ,(u,v) -u (u v')

I
P = agpo(H)Pw = UHw /L, h=H.h'

N2 = N02N'2, 0 000', Po = Po(H)p.o

Here

L = typical lateral length scale,

H = typical vertical l~ngth scale,

a = typic.al amplitude displacement of isopycnal surfaces,

= typical phase velocity of waves or eddy translation velocity

= typical velocity of fluid particles

Dropping the primes we rewrite the problem (1.14) -(1.20) in terms of the

rescaled dimensionless variables

-1
Du + a.BDw.VI; + F -- VP + R O x u ~O

p
0

.8 (1 + Qr ) Dw + F ~ p
z ,

p.-

2
+ sN r -0

3.3)z
0

--

Qrzt + \7 .fu = 01 + ar )
z (3.4)

w = QDr
(3.5)
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he boundar' onsGOJ

-

Qr -u .9 (h-Qr)
t

at z -h*(x,y,t),
(3.6)

p -(" = ~
0

at z = H
(3.7:

Here

U/C
2 2a = alH, fJ = H IL, Q = ali: = aclHU

2 2
s = N aH/cU, F/Q = gH/cF = ag/cU Ro = O L/c

o

a

+ v- ).

ay
(3.8)at ax

Assuming one or other dimensionless parameters small, we cart reduce the

system (3.2) (3.5) to one equation with one unknown function.

3.2 Long Gently Sloping Waves

We will deal with long gently sloping waves, i.e we will neglect terms

-O(Q.8, .82)

a~ = aH/L2, ~2 = H4/L4

(3.9)

In this case, from system (3.2)-(3.7) we obtain

u + £ (uut x ( 3.10 )
Po

+ c (uvv 1+ vv ) + F -p + RoOu = 0
y P,- yt x (3.11)

0
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1
+ F p

2" N r

= 0, (3.13)Qr + v [u (1 + or )
zt z

(3.14)w = Qrt + c (urx + Vry)

Henceforth, we will consider gravity waves and assume that Q-C and

In this case equation (3.12) has the form0 = 1

1

+F-P

2
+ sN 1; -0 (3 5:

.BQrtt
P, 0

When we consider large eddies and Rossby waves (Section 3.3) we will assuine

that £»1 and O = 1 + oy 0«1

is (3.12) is This makes itIt important t.hat equation linear

possible system (3.10)-(3.14)reduce to a system forto the funt.tions

independent of z

3.2.1 Homogeneous Fluid of Variable Depth

Let us put z = O at the undisturbed free surface

We seek a solution of the form

\; = A(x,y,t) + z\;l (x,y,t) + .8\;2(x,y,z,t) + 0(.82), (3.16)

---2
u- ul(x,y,t) + ~u2(x,y,z,t) + O(~ )

(3.17)

From (3.13) we can obtain, using (3.6)-(3.7)

(3.18)
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(3.22)p = ~ p w (z)P (x,y,t),
n o n n

(z) uu = ~ 111
n 1

(x,

where 1IIn (z) are the eigenfunctions of the problem

-2
+ cn(po1Ir )

Q 2
-s poN 1lI = O

F

(3.23)

1lr = 0 z = 0 Hat

The orthogonality conditions h~ve theHere n is the number of the mode

form

> = 0 3.24)
2

<p N 1IIk 1Il > = <p 1II

ko ill O
III k ;0' m

m

1 H

> = -I.
H o

where < dz

(3.10) , (3.11), (3.13) , ( 3 .14 : (3.15) andSubstituting (3.22) into

performing the usual orthogonilization procedure, we obtain the single mode

approximation (dropping the index)

u
-2 F

+ £Sfuu + vu) + V' (c r + D Q.Br
tt :

t nx -y n- n

Qs

) + Ro x u =0

(3.25)

--
Qr; + v [u (1 + QSnr;)

t

= 0
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3, III 2,
n ,1lI<p <p0 nz

1lr <p III
0 nz 0 nz

that in the case N2 const nonlinear terms inIt is easy to see,

(3.25) are small, since

p(O) -p(H)s « 1n
p(H)

If, in equation (3.21), we put depth d = 1 and, in equation (3.25),

Sn- 1; Dn = 1/3, cn2 -Qs, we will get the same .equations

3.2.3 Two layer fluid of variable depth

Consider a two-layer incompressible fluid (upper layer at O < z <

lower layer at -d(x) < z < 0) Using (3.20) -(3.21: we can see that the

motion is described by equations

Qrot + [Ul (-1 + aro)]x = 0 (3.27)

1

U l + £U l Ul + F Pl --~Qr = O
t x x 3 ottx

(3.28)

Qrot + [U2 (d + Qro)]x = 0 (3.29)

112 U2tdx )
~ ( ,

1
U2t + £U2U2x + FP2x + 3 p = 0 (3.30)

x.
2 d

sF -F -1: (s-l)
2 1 o

(3.31)
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0

dzwhe u"dz s = P1/P?

d

We introduce a new £unction

,,- ). -I-"' ~ ~ v
:.::-;---

~

u -= s U2-Ul. -=- 1! 2 L ~ -t

From "(3.27), (3.29) we obtain
-ol $ D .J

{3,33:U2
-d + ar;o

Ul = 1- ar;o

and using (3.32) we have

2
1- aa 1;0u = U2 (5 + d) ( 3.34 )
1- Qr

0

2 s -1

s + d
here a (3.35)=

From (3.29) and (3.34) we have

(d + a~o) (1- a~o) = 0 (3.36:Qr;ot +

u

2
1- Qr;o a

x

From (3.28), (3.30), (3.33) and (3.34) we obtain

[ U2 t: u+ -

t 2 s+d

+ F (5 -1) .\"ox +
(1- aa2l;o) x

(3.37)

d2

2

= 0,Utdx )

x
d(s + d)

x

s -d2

s + d

where b ~
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functiol

(3,38Ql;oo- -"IlIx

(3.39)

Then from (3~37) we obtain

(5 + d) (b + 2£iI!x + £2a2wx' )
2

+
£ [ 2 1lr

2(s+d) t

t x
( 3 .40 )

d22

-co1llxx
1/2 1/2 dx-'d2 , = 0,

(1lrxttd )x + -;- (1Iftt )x
2

where co2 = a2gH/c:

When b = 0, it is easy to show that all quadratic terms in (3.40)

vanish, The evolution of weakly-but other nonlinear terms do not

nonlinear two-layer flow over topography was considered by Helerich &

Melville (1984, 1986, 1987).

3.3 Large scale eddies on "{J-plane"

Now we want to consider Rossby waves or eddies and introduce a Rossby

number
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u

ill<

We asswne also, that

L
-«1 3F- Ro 0- 1 + 6y
r

0

where to is the Earth radius

We consider motions with large lateral scale and assume

( 3.42 )< 1, c ~ 1

in the formWe rewrite equations (3.2) -(3.4;

F

Ro

-Ou =
(3.43)

(3.44

2 F
-sN ~ = -p

Ro
+ fJQ (1 + ar; ) DDr;,

z z (3.45)

And equation (1.35) has the form

+ PoO) QDr;z = 0.~ (1 + arz)w3 + (1 + arz) opov- (~w3

£ (3.46)

We can see from (3.46) that

0) (3.47)Q:S max (JL

Let

( 3.48 )0- Q « 1

If we exclude terms of order
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#2af1 8JJ. (3.49)Q}J.

obtain from

3.50)

FPz

SN2po

+ Q (1 + Sy)
)zt

This equation is known (Pedlosky, 1987 but we obtain it here using fewer

ass,lIIIptions, only (3.42) and (3.48)
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4. CONCLUSIONS

Whe fluid with freewe conside" near motion in a

tr~nsfer the bounqary ~9ndit~o~s to the undisturbed level and solve the

problem in a £ixed regiQn In the nonlinear case it is difficult to solve

an unknown (time variable) region, The motivation forthe problem in

introducing the new functions was to obtain the problem in a fixed region,

The, new functions introduced in §1.2witho~t complicating the equatiqns

the domain ofsatisfy these conditions In the case of a flat bottom,

definition of of thicknessfunctions Wenew layer constantis a

considered the case of variable-depth fluid only for long gently sloping

For these only the undisturbed water depth appears in the finalwaves.

equations (3.20) -(3.21) in §3.2.1, and (3.40) in §3.2.3

It is a notable advantage that derivatives with respect to z do not

appear in horizontal projections of the momentum equations (1.14) It is

therefore possible to exclude z-dependence in equations describing motion

of a large horizontal scale (Chapter 3) and to integrate the corresponding

equations for plane steady motion. A second important advantage of the

approach described here is that derivatives with respect to z are present

only in two terms, Pz and rz, and there are not derivatives of the velocity

components with respect to z in the system (1.14)-(1.17)

For the equations structured in this way it is possible to write the

mechanical energy equation in a divergence form (1.30) and to obtain the

impulse and energy conservation laws in the forms (1.28) (1.29) and

(1.31) accordingly Moreover we can separate the kinetic energy
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2 22.1.

'J
Po'7z

the baroclinic potential 'energy

i 1 2 2= -<PaN r .

2
2)(4

and the barotropic potential energy

2s
(4.3)n

1
= -gposro

2

of a fluid column (§1.3) It is possible to write the Hamiltonian in the

obvious form (1.55) (§1.6)

It is clear that if we exclude nonlinear tepn,s the expressions (1.9)

become identities and the definition of the function r(x,y,z,t) reduces to

W(X,Y,z,t) = rt(X,Y,z,t (4.4)

Hence this theory is important only for nonlinear problems

It is also clear that if vertical component of velocity and a vertical

displacement of the isopycnal surfaces are both zero, expressions (1.7)

(1.9) are identical and equations (1.14) -(1.17) will be exactly the same

as equations (1.1) -(1.3)

To represent the vorticity we introduce a new function V (see 1.32)

For irrotational motion of homogeneous nonrotating fluid, the momentum

equation for function V has a simple form

11 + V3(u
-
v -T + P) = 0 (4.5)

t
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The function V is also useful when we consid-er the integr relations it

9hapter 2 (see formulas (2.43 (2.46 2.102,and (2.105) and abies

1-4

It interesting fors to compare the vorticity equations

dimensional motions of homogeneous nonrotating fluid in a vertical plane

(x, z)

+ (uw2)x = 0
U)2 (4.6)

and in a horizontal plane (x,y

+ (uU) 3 ) + (vU) 3 ) = O

x, y'"'3 (4.7:
t

Note that equation (4.7) is identically the same for new and old functions,

When homogeneous inviscid fluid moves under conservative forces we know

that a vortex line consists always of the same fluid particles, and vortex

filaments must be either closed or terminated at the boundaries But we

exclude motions having closed fluid filaments in a vertical plane,

therefore for motion in a vertical plane we have that

xl

f

x2

xI
C.>2dx = UC.>2

a

at
x2

We need the function V also for the Glebsch representation of the

velocity to give the variational principle (§1.5).
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H

I
o

2 2\2 )dz -
If)~dz

2
u +w (u +w

In Chapter 3 we considered motions with large horizontal scale

( 3 .40 ) have( 3.2 O (3.21) and the equation nosystem

singularities at the shoreline and can be used to calculate the solution to

p~oblems concerning nonbreaking waves on a slope. Equation (3;40: can also

be useful also in studying the transformation of nonlinear internal waye

2propogation through the point where PIH12 = P2H2 (Pl'P2'Hl'H2(x) are

thisdensity and and layers) At PQint thelowerdepth in upper

coefficient of quadratic terms changes sign.

is a very usefulintroduction of the functions (1.9) tool in

studying nonlinear motions of an inviscid stratified fluid
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